Coovally视觉智能分析与应用系统全面升级 更多新功能等你来!

Coovally是一款提供AI建模、项目管理和系统部署的机器视觉平台,支持数据预处理、智能标注、模型训练和一键部署。其提升了操作便利性和易用性,可无缝接入视频流,支持多模型调用和低代码操作,广泛应用在多个行业领域,如铁路安防和高速公路智能分析,有效提高安全监控和管理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Coovally视觉智能分析与应用系统是一款智能视频分析解决方案的设计与运行平台,系统在保持了原有架构的同时增加了海量新功能,在操作便利性和易用性方面进行了显著提升;同时,还可以将在Coovally训练好的模型或内置的模型一键部署到系统中,真正实现了快速与便捷,使AI应用开发的门槛进一步降低。

系统界面

 Coovally是一个包含完整AI建模流程、AI项目管理及AI系统部署管理的机器视觉平台,可提供数据预处理、智能标注、分布式模型训练、多维度模型评估、一键式模型部署服务。Coovally加快了AI视觉解决方案的开发、集成、测试和验证,帮助提升企业的AI技术栈和智能软件开发能力,帮助用户快速批量验证多种机器学习和深度学习模型的性能。

操作便利性提高

Coovally视觉智能分析与应用系统支持实时显示监控视频、告警信息、检测结果截图等功能。系统延续了Coovally一贯的协同理念,在产品层面充分考虑到用户的实际操作需求,不断打磨功能,将用户的操作便利性做了显著的提升。

  1. 视频流无缝接入

系统支持接入业务摄像头,在输入视频流后,利用Coovally内置或训练好的模型一键部署至系统,从而实现推理预测、智能识别等功能。

  1. 多模型任意调用

用户可以针对不同的场景需求,像拼积木一样将模型在系统上进行排列组合,快速并简易的搭建自己想要的应用,以满足实际业务需求。

平台易用性升级

通过Coovally系统,用户可以在零代码或低代码的情况下进行视频流的设计、部署、管理等功能,这一机制大幅缩短了视频流检测工程设计周期,让交付效率进一步提高。

目前Coovally平台已包含150+常规机器学习与深度学习模型,并广泛应用于制造业质检、地质灾害监测、电力行业设备监控、医学专病诊断、智慧交通、智慧园区等多样场景。同时,还累积了数百万的数据,以及数百个预训练pipeline,让用户可以快速搭建标准/非标准的解决方案,将深度学习能力赋能于解决方案中。

案例分享

铁路安防视觉分析系统

 Coovally基于视觉智能分析与应用系统帮助铁路周界实现了对人员入侵、异物精准定位和沿线电力牵引杆塔倾斜的在线监测,助力高铁周界安防项目实现多角度、全方位的安防监测运维新模式。

该方案通过对铁路周界的监控,无需远程操作即可通过系统实现铁路周界的“监控视频自动化分析”及“自动检测异常并报警”的能力,可对杆塔倾斜角度、入侵位置进行检测;并且可以全年×24小时通过视频实时监控高速铁路周界,在检测到违规行为和异常事件时,立即进行记录、告警,以提升高速铁路运营的安全性。

高速公路智能分析系统

 Coovally基于视觉智能分析与应用系统为某高速公路段打造了高速公路智能分析系统,实现了全天候对高速各类交通事件和交通参数实时检测,如多种交通事件感知,区域动态识别,远距离、多目标识别等。

系统支持区域内动态识别、场景智能分析与上报功能,可对高速公路上倒车、缓行、拥堵、逆行、停驶等多场景进行分析;并且智能截取违法违规场景视频并上报,提高安全应急保障能力便于运维人员、管理者洞察各项数据,并迅速做出决策。

### 智能铁轨健康监测系统的业务流程图IT系统设计 智能铁轨健康监测系统是一种综合运用多种先进技术(如图像识别、语义分割、传感器数据采集等),用于实时监控铁轨状态并检测潜在缺陷的智能化解决方案。以下是该系统的典型业务流程及其对应的IT系统设计方案。 #### 一、业务流程概述 智能铁轨健康监测系统的业务流程主要包括以下几个阶段: 1. **数据采集** 利用安装在轨道沿线的各种传感器以及车载摄像头,收集铁轨表面状况的数据。这些数据可能包括但不限于振动信号、温度变化、视频流等[^3]。 2. **预处理传输** 收集到的原始数据经过初步过滤和压缩后上传至云端服务器或边缘计算节点进行进一步分析。此环节旨在减少冗余信息量的同时保留关键特征以便后续处理[^1]。 3. **数据分析模型推理** 使用基于深度学习框架训练好的神经网络模型对输入数据执行分类或者回归任务,判断是否存在裂缝或其他形式损伤等问题;另外还可以借助像 Coovally 这样的平台加速 AI 解决方案构建过程,从而提高整个工作流效率[^2]。 4. **告警通知维护建议生成** 当发现异常情况时立即触发报警机制并通过短信邮件等方式告知相关人员采取相应措施修复受损部位以防止事故发生[^1]。 5. **记录存档及反馈优化** 将每次巡检的结果保存下来形成历史数据库供未来查询参考之用,并利用积累的经验不断改进现有算法性能达到更好的预测精度目标[^4]。 --- #### 二、IT 系统架构设计 为了支持上述复杂的业务逻辑需求,下面给出了一种典型的三层分布式 IT 架构设计方案: 1. **感知层** - 主要由分布在铁路线路两侧的各种物理传感装置组成,负责捕捉现场环境参数。 - 可采用无线通信协议将获取的信息发送回中心控制室做集中管理。 2. **网络层/传输层** - 提供稳定高速率连接通道让前端设备能够顺利把海量多媒体资料输送到后台数据中心加以解析运算。 - 考虑到现在很多地方可能存在信号盲区的情况所以有必要引入卫星辅助定位服务确保全域覆盖无死角。 3. **应用层** - 包含核心业务功能模块比如可视化界面展示当前路况概览图表统计趋势曲线等等实用工具方便操作员直观了解全局态势发展动态调整策略方针。 - 同样也包含了前面提到过的那些高级人工智能组件用来完成自动化决策制定等工作减轻人力负担提升工作效率和服务质量标准。 --- ```python class RailHealthMonitoringSystem: def __init__(self): self.data_collector = DataCollector() self.preprocessor = PreProcessor() self.model_inference_engine = ModelInferenceEngine() def run(self): raw_data = self.data_collector.collect() # 数据采集 processed_data = self.preprocessor.process(raw_data) # 数据预处理 result = self.model_inference_engine.infer(processed_data) # 模型推理 if result['anomaly']: send_alert_notification(result) # 发送告警通知 def main(): system = RailHealthMonitoringSystem() while True: try: system.run() except Exception as e: log_error(e) if __name__ == "__main__": main() ``` --- ### 总结 综上所述,智能铁轨健康监测系统的成功实施离不开科学合理的规划布局和技术手段的有效融合。只有这样才能够充分发挥各自优势共同构筑起一道坚固可靠的安全防线守护人民生命财产免受威胁损害风险侵害[^1].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值