肽组学:生命密码的破译者,健康未来的缔造者

2023年,Nature Reviews Methods Primers(IF=50.1)一篇题为“Peptidomics”的重要综述,系统性地总结了多肽组学的研究进展、技术方法及应用前景。该综述的发表不仅为多肽组学领域提供了权威的理论支撑和技术指导,同时也为蛋白质组学研究开辟了新的方向,推动了生命科学领域对生物活性肽的深入探索。

肽(Peptide)是一类由核糖体合成途径或非核糖体酶系统(部分情况下由特异性连接酶催化)生成的生物活性聚合物,在人类生理调控及疾病发生发展中具有重要作用。其分子结构通常由2-50个氨基酸通过肽键连接而成,可形成线性链或环状构型,并常伴随翻译后修饰、非经典氨基酸插入或稳定化结构基序等特征。凭借独特的分子尺寸和结构多样性,肽填补了小分子化合物与大分子蛋白质之间的化学空间,成为一类具有特殊生物活性的物质。在临床应用方面,肽类物质作为生物标志物(Biomarker)和创新治疗药物正日益受到重视。目前全球已有60余种肽类药物获批上市,另有150多种肽类候选药物处于临床研发阶段。

图片

图1 多肽,从分析到应用的示意图(Hellinger et al., 2023)。

01  肽组学研究流程

现代肽组学工作流程包括遗传信息分析、肽表征和数据的计算处理。通过肽前体挖掘或代谢网络分析来获取遗传信息。肽水平的工作可以细分为几个步骤,包括样品制备和净化、质谱分析和数据评估或整合(图2)。

图片

图2 常见肽组学工作流程概述(Hellinger et al., 2023)。

现代肽组学研究工作流程主要包含三个核心环节:遗传信息解析、肽分子表征以及数据计算分析。在遗传信息解析阶段,研究人员可通过肽前体挖掘或代谢网络分析等手段获取肽的生物合成信息。肽分子表征则涵盖多步骤实验流程,主要涵盖以下几方面。

1 样品制备与纯化

根据肽的来源不同,可采取多种提取和纯化方法。在样品制备过程中,肽类物质(尤其是低丰度肽)易发生降解是一个普遍存在的问题,为提高活性肽的获得率,通常采用以下方法抑制降解酶活性:加热处理组织/细胞、添加蛋白酶抑制剂或离液剂。需注意的是,过度热处理可能导致肽类发生化学修饰,故应严格控制处理时间。实际操作中,建议在低温环境下进行样品处理和储存,以最大限度保持肽的稳定性。为确保肽类分析物的高效提取,需通过细胞裂解技术充分分解细胞/组织,并选用适宜肽类溶解特性的缓冲体系。值得注意的是,从复杂生物基质中实现高效、稳定的肽类提取,不仅是后续样品处理的基础,更是获得高浓度肽类分析物的关键环节。

提取后,粗生物样品中含有低丰度肽,因此需对其进行纯化,其中,固相萃取(SPE)通常作为一种用于样品浓缩和脱盐的快速工具;液相色谱是一种更有效的样品纯化方法,通过结合超滤和色谱分离技术(如反相色谱、离子交换色谱和体积排阻色谱)从水解产物基质中分离肽,使用氨基酸定量、Edman降解或基于质谱的从头测序将分离的肽进一步分析到氨基酸水平。

肽标记

在生物模型中,可以通过代谢、酶和化学策略用稳定同位素标记目标肽。由于代谢标记需通过体内代谢引入稳定同位素,实验周期较长,目前,已开发出多种标签以进行体外肽稳定同位素标记,例如串联质量标签(TMT)和用于相对和绝对定量的同量异位标签(iTRAQ),以及N,N-二甲基亮氨酸(DiLeu)、氘同量异位胺反应标签(DiART)和10-重同量异位标签(IBT)等低成本标签。值得注意得的是,对于某些肽组学的应用,例如发现、分离和分析富含半胱氨酸的肽,半胱氨酸残基的化学衍生化可能是有益的。

3 肽分离

由于肽可能以带电分子的形式存在于溶液中,具有不同程度的疏水性,因此它们适用于多种分离技术。尽管反相液相色谱已被广泛使用,但随着新型吸附剂材料的不断发展,体积排阻、离子交换和混合模式应用越来越受到关注。色谱分离系统一般通过电喷雾电离(ESI)接口直接与质谱联用或离线使用;反相色谱法有望实现高峰度及高分离度,最佳反相固定材料的选择取决于肽分析物的结构和化学多样性。反相应用中的流动相是水性和有机溶剂,通常是甲醇或带有酸性改性剂的乙腈,甲酸铵或乙酸铵可用作质谱兼容的缓冲系统。

肽分离方法的最新成员是离子淌度质谱法(IMS),根据气相离子的3D形状对其进行分选和分离。在离子源和质量分析仪之间放置IMS模块可提高离子利用效率,提高检测灵敏度和特异性,并拓宽动态范围。

 4 质谱分析

肽组学研究可使用多种类型的质量分析仪,如TOF、四极杆、离子阱,以及orbitrap23或离子回旋加速器共振分析仪等等。鸟枪法肽组学通过实施串联质谱(MS/MS)与DDA和DIA形式实现测序。DDA的优点是,在给定的色谱时间范围内,由用户指定数量的最强母离子碎裂而成,从而获得高质量的MS/MS谱图;DIA的实施提高了样品的可重复性,从而减少了缺失值,并大大提高了肽组学分析的定量准确性,但DIA的主要局限性是依赖于参比谱库,通常通过对其他样品进行DDA分析生成。

目前,MALDI MSI仍然是脂质、代谢物和肽/蛋白质空间映射的最常用方法,此外,二次离子质谱法或SIMS-MSI54、解吸ESI MSI55和扫描微探针MALDI MSI56、表面辅助激光解吸/电离质谱法和纳米结构成像质谱法也可用于检查蛋白质/肽的定位。MSI涉及相对简单的样品制备,并且能够在单个实验中定位组织切片上数百到数千种不同的分析物,值得注意的是,OCT化合物中高浓度的聚乙二醇(PEG)会影响分析物信号,因此不建议在MSI实验中将OCT化合物用于组织包埋。

 5 数据评估与整合

不同来源的肽在自然界中发挥着不同的作用,因此可能具有各种修饰,这些修饰为肽分析和表征带来了困难,在后基因组时代,科学家通过访问数据库,找到了解决这些问题的工具。大多数公开可用的ab initio基因和蛋白质序列数据由GeneMark或Prodigal等程序进行注释,但这些平台并不能完全注释短开放阅读框(sORF)。因此,需要开发更多的专门用于预测多种翻译后酶、氨基酸底物或非核糖体肽的生物合成机制,帮助研究人员注释可能的肽修饰。对于真核遗传编码的肽,如果有基因组或转录组数据,可以使用SPADA、MiPepid、DeepCPP或rAMPage等工具;对于蛋白质来源的生物活性肽,PeptideLocator可用于蛋白质序列分析。来自细菌和真菌的核糖体合成和翻译后修饰肽(RIPP)和非核糖体合成肽(NRP)的生物合成基因通常编码在生物合成基因簇中,需要专门用于生物合成基因簇检测的程序,例如antiSMASH和DeepBGC。这些工具可通过使用EvoMining的系统发育基因组挖掘来补充,以发现同源基因簇。发现新型肽的过程是计算机模拟和实验室工作的迭代过程,其中新发现不断,也为不断扩大的数据库提供了数据支撑,从而可以开发更精确和详细的工具(图3)。

图片

图3 如何将多组学方法应用于肽组学的一般工作流程(Hellinger et al., 2023)。

02  肽组学的临床应用

1 用于识别感染伤口中的病原体特异性肽

2024年8月,Nature communications(IF:14.7)上发表的一篇题为“Peptide clustering enhances large-scale analyses and reveals proteolytic signatures in mass spectrometry data.”文章,通过对高度明确的猪伤口感染和人类临床不愈合伤口的伤口液肽组进行大规模定量分析,展现出了一种将肽聚合成肽簇,降低肽组学数据维度,改进蛋白酶切割位点定义,增强样品间可比性,并实施类似于其他组学领域采用的大规模数据分析的方法,揭示了细菌定植最早阶段的特征表型特异性肽区域和蛋白水解活性,并在Ⅰ型糖尿病患者的尿肽组上验证了该方法,揭示了潜在亚组并提高了分类准确性(图4)。

图片

图4 伤口感染后的液肽组特征(Hartman et al., 2024)。

2 在肿瘤中的应用

2025年5月,Cell(IF:45.5)上发表的一篇题为“Precision proteogenomics reveals pan-cancer impact of germline variants”文章,研究了种系变异对癌症患者蛋白质组的影响,包括10种恶性肿瘤类型的1064人,同时引入了“精确肽组学(precision peptidomics)”一词,即将337469个编码种系突变体映射到患者的质谱数据中的肽段上,通过利用相关蛋白质数据库揭示其对翻译后修饰、蛋白质稳定性、等位基因特异性表达和蛋白质结构的潜在影响,在可能影响蛋白质组学特征的癌症基因中鉴定罕见的致病性和常见的种系变异,利用精确肽组学分析预测信号调节蛋白α(SIRPA)和神经胶质纤维酸蛋白(GFAP)的不稳定事件,分别与免疫调节和胶质母细胞瘤诊断相关(图5)。

图片

图5 图形概要(Rodrigues et al., 2025)。

参考文献

[1]Hellinger R, Sigurdsson A, Wu W, et al. Peptidomics[J]. Nature Reviews Methods Primers, 2023, 3(1): 25.

[2]Hartman E, Forsberg F, Kjellström S, et al. Peptide clustering enhances large-scale analyses and reveals proteolytic signatures in mass spectrometry data[J]. Nature Communications, 2024, 15(1): 7128.

[3]Rodrigues F M, Terekhanova N V, Imbach K J, et al. Precision proteogenomics reveals pan-cancer impact of germline variants[J]. Cell, 2025.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值