51nod 1717 好数

本文探讨了一个数学问题,即在进行特定操作后,确定好数的数量。好数定义为经过一系列操作后值为0的整数。文章给出了求解好数数量的算法实现,并通过观察数据模式得出了解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基准时间限制:1 秒 空间限制:131072 KB 分值: 40  难度:4级算法题
 收藏
 关注
有n个数  a[1],a[2],...,a[n]开始都是0
现在进行操作 t从1~n依次增加
每次把下标时t的倍数的数都反转(0变成1,1变成0) 
如果最后a[i]为0,那么称此时的i为好数。
现在对于给定的n,求这时候的好数个数。
n<=1e15
Input
一个数n,表示有n个数。(n<=1e15)
Output
一个数,表示好数的个数。
Input示例
2
Output示例
1
UsedToBe  (题目提供者)
C++的运行时限为:1000 ms ,空间限制为:131072 KB  示例及语言说明请按这里


一道有点神奇的题目

看到数据范围1e15想到打表找规律

然后就找啊找啊

发现随着n滴增加

ans每次增加1

然后当n是一个完全平方数的时候

就不增了

所以想到答案为n-sqrt(n)

证明:

每个数如果会被它的所有因子筛

如果筛偶数次为0

奇数次才为1

而因子是两两配对的

所以除了完全平方数之外所有的数都是偶数个因子

所以n-n以内的完全平方数的个数

注意sqrt返回值为浮点数

要转一下long long

#include<cstdio>
#include<cstring>
#include<cmath>
int main()
{
	
	long long	int n;
	scanf("%lld",&n);
	printf("%lld\n",n-(long long )sqrt(n));
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值