将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。
输入格式:
每个输入包含一个测试用例,即正整数N (0<N≤30)。
输出格式:
按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1={n1,n2,⋯}和N2={m1,m2,⋯},若存在i使得n1=m1,⋯,ni=mi,但是ni+1<mi+1,则N1序列必定在N2序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。
输入样例:
7
输出样例:
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7
代码长度限制
16 KB
时间限制
800 ms
内存限制
64 MB
由于对于递归的不熟练,写这道题时只能通过这种办法来实现了,当N小的时候还好,N一大就很耗时间。
结果如下
以下是代码和我的一些注释
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int input = sc.nextInt();
//n用于记录下标位置
int n = input - 1;
//count用于记录输出了几个
int count = 1;
int[] num = new int[input + 1];
//起始先把input个数置为1
for (int i = 0; i < input; i++) {
num[i] = 1;
}
while(true){
//当循环到自己的时候退出,并且这个时候不用加;
if (num[0] == input){
System.out.print(input +"=" + input);
break;
}
//如果总和和输入值相等,那么输出,后面进一
if(sum(num) == input){
output(input,num,count);
count++;
num[n-1]++;
num[n--] = 0;
} else if(sum(num) < input) {
//当总和小于的时候,有两种情况,一种是0结尾,一种是非0结尾
//0结尾就把0置为前面的那个数
//非零结尾就让后面那个数自增
if (num[n] <= num[n+1]){
num[n+1]++;
n++;
} else {
//为了避免如同1112,1121这样的重复的情况,
//这里规定后面的一定大于等于前面的
num[n+1]=num[n];
n++;
}
//总和大于的情况,倒数第二位进一,最后一位置零
} else {
num[n-1]++;
num[n--]=0;
}
}
}
static public int sum(int[] num){
int sum = 0;
for (int i = 0; i < num.length; i++) {
sum += num[i];
}
return sum;
}
static public void output(int n,int[] num,int count){
System.out.print(n +"=");
for (int i = 0; i < num.length; i++) {
if (num[i] != 0 && num[i + 1]!= 0){
System.out.print(num[i]+"+");
}
if (num[i + 1] == 0){
System.out.print(num[i]);
break;
}
}
//按照格式输出
if (count % 4 == 0){
System.out.println("");
} else {
System.out.print(";");
}
}
}