EN 54-23: 火灾报警装置视觉报警装置—CE认证

本文介绍了欧盟市场中视觉报警装置必须通过CE认证,以符合建筑产品法规CPR305/2011/EU和协调标准EN54-23。概述了产品认证流程,包括确定产品类型、测试评估和加贴CE标志等内容,确保产品在欧洲市场的合规销售。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

火灾探测和报警系统CE认证(欧盟强制认证)-简介

在欧盟市场“CE”标志属强制性认证标志,以表明产品符合欧盟《技术协调与标准化新方法》指令的基本要求。这是欧盟法律对产品提出的一种强制性要求。

在视觉报警装置加贴CE标志不但可以证明其产品符合建筑产品指令(CPR 305/2011/EU)及其相关标准(欧洲协调标准EN 54-23)规定的安全,环保,卫生和消费者保护。而且可以合理规避贸易技术壁垒,在欧洲市场自由销售并打开其他国际市场。

注:欧盟建筑法规CPR(Construction Product Regulation) 305/2011/EU 全面取代欧盟建筑产品指令CPD(Construction Product Directive) 106/89/EEC, 并且从2013年7月1日起强制执行

视觉报警装置CE认证 –EN 54-23– 需要符合的产品指令和协调标准

A.产品指令:建筑产品法规CPR(Construction Product Regulation) 305/2011/EU

B.欧洲协调标准:

EN 54-23: 火灾探测和火灾报警系统-第23部分:火灾报警装置-视觉报警装置

EN 54-23: Fire detection and fire alarm systems -Part 23: Fire alarm devices -Visual alarm devices;

视觉报警装置CE认证 –EN 54-23 – 涉及的产品范围

本欧洲标准规定了固定装置中视觉报警装置的要求、测试方法和性能标准,该装置旨在在火灾探测和火灾报警系统与建筑物居住者之间发出火灾视觉警报(参见图 1 中的 C 项) EN 54-1:1996)。 它仅涵盖那些通过与外部电源(例如火灾报警系统)进行物理电气连接来获取工作电源的设备。

视觉报警装置CE认证-EN 54-23 –认证流程

1、确定需要认证的产品类型,提交申请

2、确定欧洲产品指令,视觉报警装置需符合新的欧盟建筑产品法规CPR 305/2011/EU

3、确定欧洲协调标准,视觉报警装置需符合协调标准EN 54-23

4、根据CPR指令和协调标准EN 54-23进行测试评估

5、获得由欧盟公告机构颁发的测试报告和证书

6、发放产品性能声明(Declaration of Performance)

7、在产品包装上加贴带公告机构编码的CE标志

8、在欧洲市场自由销售

出自JJ2023

内容概要:本文详细介绍了Maven的下载、安装与配置方法。Maven是基于项目对象模型(POM)的概念,用于项目管理和构建自动化的工具,能有效管理项目依赖、规范项目结构并提供标准化的构建流程。文章首先简述了Maven的功能特点及其重要性,接着列出了系统要求,包括操作系统、磁盘空间等。随后,分别针对Windows、macOS和Linux系统的用户提供了详细的下载和安装指导,涵盖了解压安装包、配置环境变量的具体操作。此外,还讲解了如何配置本地仓库和镜像源(如阿里云),以优化依赖项的下载速度。最后,给出了常见的错误解决方案,如环境变量配置错误、JDK版本不兼容等问题的处理方法。 适合人群:适用于初学者以及有一定经验的Java开发人员,特别是那些希望提升项目构建和依赖管理效率的技术人员。 使用场景及目标: ①帮助开发者掌握Maven的基本概念和功能特性; ②指导用户完成Maven在不同操作系统上的安装与配置; ③教会用户如何配置本地仓库和镜像源以加快依赖项下载; ④解决常见的安装和配置过程中遇到的问题。 阅读建议:由于Maven的安装和配置涉及多个步骤,建议读者按照文中提供的顺序逐步操作,并仔细检查每个环节的细节,尤其是环境变量的配置。同时,在遇到问题时,可参考文末提供的常见问题解决方案,确保顺利完成整个配置过程。
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 旅行商问题(Traveling Salesman Problem, TSP)是一种经典的组合优化问题,目标是找到一条最短路径,让推销员访问一系列城市后返回起点,且每个城市只访问一次。该问题可以转化为图论问题,其中城市是节点,城市间的距离是边的权重。遗传算法是一种适合解决TSP这类NP难问题的全局优化方法,其核心是模拟生物进化过程,包括初始化、选择、交叉和变异等步骤。 初始化:生成初始种群,每个个体(染色体)表示一种旅行路径,通常用随机序列表示,如1到18的整数序列。 适应度计算:适应度函数用于衡量染色体的优劣,即路径总距离。总距离越小,适应度越高。 选择过程:采用轮盘赌选择机制,根据适应度以一定概率选择个体进入下一代,适应度高的个体被选中的概率更大。 交叉操作:一般采用单点交叉,随机选择交叉点,交换两个父代个体的部分基因段生成子代。 变异操作:采用均匀多点变异,随机选择多个点进行变异,变异点的新值在预设范围内随机生成,以维持种群多样性。 反Grefenstette编码:为确保解的可行性,需将变异后的Grefenstette编码转换回原始城市序列,即对交叉和变异结果进行反向处理。 迭代优化:重复上述步骤,直至满足终止条件,如达到预设代数或适应度阈值。 MATLAB是一种强大的数值和科学计算工具,非常适合实现遗传算法。通过编写源程序,可以构建遗传算法框架,处理TSP问题的细节,包括数据结构定义、算法流程控制以及适应度计算、选择、交叉和变异操作的实现。遗传算法虽不能保证找到最优解,但在小规模TSP问题中能提供不错的近似解。对于大规模TSP问题,可结合局部搜索、多算法融合等策略提升解的质量。在实际应用中,遗传算法常与其他优化方法结合,用于解决复杂的调度和路径规划问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值