AI建筑设计卷疯了!Stable Diffusion成了最终赢家?

本文介绍了AI绘画的兴起,特别是StableDiffusion的崛起,它提供精准的图像和风格控制,支持自定义训练,且完全免费开源。与Midjourney相比,StableDiffusion更易操作,适合设计师,对硬件要求相对较低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片

AI绘画真的火了!

最近观察员打开各大平台

刷到的基本上都是

用AI生成的画像、插画,甚至建筑设计

图片

区别于早几年的人工智能

如今的AI只需要给它一段文字描述

就能生成精美图像

这也极大地改变了我们的创作方式

图片

文末附AI绘画Stable Diffusion安装及工具包

目前最主流的AI绘画平台主要有2种:Midjourney、Stable Diffusion

图片

Midjourney是一款AI制图工具,你只要给它关键词,它就能透过AI算法生成相对应的图片,而且绘图质量比较高。但目前不仅要收费,而且硬件要求较高,甚至同一个关键词组合每次得到的结果都不尽相同。

图片

相比Midjourney来说,Stable Diffusion的可操作性则更高,有人曾这么简单的形容两者的区别:“Midjourney就像电子产品中的苹果,而Stable Diffusion更像是安卓。两者只是创作方式不同,没有高下之分。”

图片

图片

接下来,我们就一起看看Stable Diffusion会给我们带来什么样的惊喜吧。

精准把控出图

AI绘画的关键在于图像的精准控制风格控制,区别于其他AI软件,Stable Diffusion自身拥有众多选项,可以让你“定制”想要的图像效果。

图片

此外,还包括更改图像大小、生成图片数量、采样器等;让你的效果图更加精准!

图片

自定义训练风格模型

Stable Diffusion还有另个强大的功能——能够自定义训练风格模型。倘若现有风格无法满足你的需求,你还可以自己训练特定风格模型。

图片

图片

这相当于你自己在带一个任劳任怨、效率特别高的手下,还有很重要的一点就是,他不会离职!

可构建庞大的“生态”

在Stable Diffusion爆火的同时,Stability.ai官方和业内大佬还研发出一系列免费插件,比如:AI Render、Stability等。

图片

图片

▲ 适配Blender的插件AI Render

而这些插件可以让你在使用其他3D软件(如blender)时,将简单的几何体渲染成详细图像。在不久的将来,Stable Diffusion将拥有一套十分强大的插件生态。

图片

完全免费开源

相较于Midjourney等其他AI平台,Stable Diffusion完全免费开源,而且现在已经拥有超过一千种模型可供你下载,所有代码均在GitHub上公开,任何人都可以拷贝使用。

图片

图片

说到最后

对于建筑设计来说,结果更可控的Stable Diffusion显然更受设计师们的青睐。Stable Diffusion的配置要求并非很高,显存4G以上就可以,不过要求硬盘至少要有50G以上(建议100G),适用于Win10-11版本。

图片

安装包及各种工具包制作人已经为你准备好了,赶紧下载试试吧!

AI绘画Stable Diffusion安装及工具包

### Stable Diffusion 3 发布信息和特性 #### 架构特点 Stable Diffusion 3采用扩散转换器架构作为其核心竞争力,这种架构使得模型能够更有效地处理复杂的图像生任务[^1]。 #### 性能提升 相比前代版本,Stable Diffusion 3在多个方面实现了显著改进。具体来说,在文本语义理解、色彩饱和度、图像构图等多个维度上均有增强,尤其值得注意的是对于多主题提示的支持以及更高的图像质量[^2]。 #### 参数规模与适用性 此款新型号拥有不同大小的变体,最小版仅有8亿参数而最大可达80亿参数。这样的设计不仅让高性能计算为可能,同时也确保了轻量化部署的需求得到满足,甚至能够在移动终端等资源受限环境中运行良好[^4]。 #### 对比其他模型的表现 当与其他同类产品如 MidJourney 进行比较时,Stable Diffusion 3展现出了不俗的竞争实力;然而面对某些特定领域内的专用解决方案(例如 OUYSD3),则显示出更为优越的整体性能优势[^3]。 ```python # Python代码示例用于展示如何加载预训练好的StableDiffusionV3模型 from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-3" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) pipe.to("cuda") prompt = "A fantasy landscape with a castle on top of the mountain under starry sky." image = pipe(prompt).images[0] image.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值