大模型开发必备:Prompt 提示词工程入门到精通,看完少走99%弯路!

在大模型席卷各行各业的当下,越来越多的开发者投身于大模型应用开发的浪潮中。然而,不少人在实际操作中会遇到这样的困惑:同样调用一个大模型,为什么别人能得到精准、有用的结果,自己却总是收获一堆无关紧要的内容?其实,问题很可能出在 Prompt 提示词上。Prompt 提示词工程作为大模型开发的核心技能,掌握它能让你在开发路上少走 99% 的弯路,高效发挥大模型的能力。

1 、入门篇:Prompt 工程基础

什么是 Prompt 工程?

Prompt 工程(Prompt Engineering)是针对大语言模型(LLM)设计、撰写和优化输入提示词的系统化方法,目的是引导模型产生符合预期的输出。它类似于给模型“下指令”,通过巧妙的语言表达,让模型“理解”任务。

提示词的价值:

  • 提高输出质量:减少歧义、控制风格、提升准确度
  • 扩展应用场景:覆盖写作、翻译、代码生成、知识问答等
  • 降低成本:减少反复微调、减少 API 调用次数

2、设计篇:Prompt 构成与流程

2.1 Prompt 的三要素
  1. 任务说明(Instruction):明确“做什么”(如“请将下列文字翻译成英文”)
  2. 上下文(Context):提供必要的信息(如原文、背景、格式要求)
  3. 输出约束(Constraint):格式、长度、风格、语气等(如“字数不超过100字”,“以新闻稿形式”)
2.2 设计流程
  1. 明确目标: 先写出一句“自然语言”版需求
  2. 拆解要素: 将任务说明、上下文、约束分开梳理
  3. 初版编写: 按照三要素拼接成完整 Prompt
  4. 测试验证: 调用模型,观察输出,记录问题
  5. 迭代优化: 调整指令、增删示例、微调格式
  6. 封装复用:将成熟 Prompt 模板化,输出文档或脚本

3、 实战篇:三大范式详解与示例

3.1 零样本(Zero-shot)

特点:不提供示例,直接给出指令

示例:文本情感分析

指令:请判断以下评论的情感倾向,并输出“正面”、“中性”或“负面”:
评论:我非常喜欢这部电影,但结尾有些仓促。
  • 输出约束:仅输出三种标签之一
  • 优化思路:可加入“简要说明理由”
3.2 少样本(Few-shot)

特点:提供少量输入–输出对,帮助模型“对齐”

示例:英文同义句改写


以下是原句及其改写示例:
示例 1:
原句:The weather is nice today.
改写:Today's weather is pleasant.

示例 2:
原句:She completed the task quickly.
改写:She finished the task in no time.

请对下列句子进行同义改写:
原句:He solved the problem efficiently.
改写:
  • 示例数量:通常 2–5 条
  • 注意:示例应多样、覆盖边界情况
3.3 链式思维(Chain-of-Thought)

特点:引导模型分步思考,适合复杂推理或计算

示例:数学题分步解答


请逐步分析并解答以下问题:
“小明有 12 个苹果,分给 3 个朋友后,每人得到多少个?”
思考过程:
1. 总苹果数…
2. 每人分得 = 总数 ÷ 朋友数…
答案:
  • 效果:显著提高多步推理准确率
  • 扩展:可用于法务、医学等领域的逻辑推理

4、 优化篇:调优思路与技巧

  • 明确角色设定
“你是资深律师,请用专业术语分析以下合同条款:…”  
  • 控制输出长度
“请用不超过 50 字概括以下内容:…”  
  • 多任务混合
“请先翻译,再给出五个关键词,再提炼摘要。”  
  • 纠错与自检

引导模型自我检查:

“请检查以上回答是否有矛盾或错误,并给出修改建议。”  
  • 温度与 Top-k 调参

  • 低温度(0.0–0.3):输出更稳定、可控

  • 高温度(0.7–1.0):更具创造性

5、 高级篇:模板化、自动化与工具链

  • Prompt 模板库:将常用 Prompt 写成可配置的模板(如 JSON + Mustache)
  • 链式调用(Prompt Chaining):将多个 Prompt 串联,形成流水线
  • 自动化平台:利用 LangChain、PromptLayer、LlamaIndex 等进行管理与监控
  • 评估与度量:构建自动化评估体系(BLEU、ROUGE、人工打分等)

6、 实战案例篇

序号场景类型要点说明
1情感分析Zero-shot直接判断文本情感,输出标签并简要说明
2代码生成Few-shot提供示例代码—输入输出对,指定语言和功能
3数据可视化建议Chain-of-Thought给定数据描述,引导模型分步思考并输出可视化图表设计方案
3客服对话机器人Few-shot + 混合多轮对话示例 + 上下文管理,控制回复风格
4医学诊断报告摘要Chain-of-Thought分步提取关键指标,生成结构化报告
案例 1:文本情感分析(Zero-shot)
指令:请判断下面用户评论的情感倾向,并输出“正面”、“中性”或“负面”,然后简要说明判断依据(不超过两句话)。
评论:这个产品的使用体验非常差,客服也毫无帮助。

期望输出:

负面  
判断依据:用户明确表示体验“非常差”,且对客服服务不满。

案例 2:API 代码生成(Few-shot)

以下是 Python 调用 OpenAI 接口的示例:
示例 1:
输入:调用 text-davinci-003 模型生成一句问候语  
输出:
```python
import openai
openai.api_key = "YOUR_KEY"
response = openai.Completion.create(
    model="text-davinci-003",
    prompt="请生成一句中文问候语。",
    max_tokens=20
)
print(response.choices[0].text.strip())

期望输出:



示例 2:
输入:调用 chat-gpt-4 模型进行对话  
输出:
```python
import openai
openai.api_key = "YOUR_KEY"
response = openai.ChatCompletion.create(
    model="gpt-4",
    messages=[
        {"role":"system","content":"你是助手。"},
        {"role":"user","content":"今天天气如何?"}
    ]
)
print(response.choices[0].message.content)

请根据上述风格,编写一段 Python 代码,使用 OpenAI 接口生成一段“简单的天气预报”文本。

案例 3:数据可视化设计(Chain-of-Thought)

请参考以下数据描述,分步思考并给出三种可视化图表的设计方案,包括图表类型、要展示的字段、配色和标题建议。

数据描述:  
- 产品销售:日期(2025-01-01 至 2025-04-30)、销售额、产品类别(A/B/C)、区域(华东/华南/华北)

要求:
1. 分步思考每种图表的适用场景与优缺点;  
2. 最终输出三种图表的具体设计要点。  


案例 4:多轮客服对话(Few-shot + 混合)

你是一个在线客服机器人,风格专业且亲和。以下为两轮示例对话:

示例 1:
用户:我想查询订单 12345 的配送状态。  
机器人:您好,我这就为您查询……您的订单已于 5 月 12 日出库,预计 5 月 15 日送达。

示例 2:
用户:能更改收货地址吗?  
机器人:可以的,请提供新的收货地址,我会帮您修改。

请继续与用户展开下一轮对话:
用户:我收货地址从北京市海淀区改到上海市静安区。

案例 5:医学诊断报告摘要(Chain-of-Thought)
场景:医生已提供患者的各项检查数据,现需生成结构化的诊断报告。

检查数据:  
- 血压:135/85 mmHg  
- 血糖(空腹):6.2 mmol/L  
- 心率:78 次/分  
- 胆固醇:总胆固醇 5.8 mmol/L,HDL 1.2,LDL 3.4

Prompt:
请先分步分析每项指标的正常范围、是否偏离;再根据分析给出“高血压”“血糖偏高”“心率正常”“血脂偏高”等诊断要点;最后整合成一段不超过 150 字的诊断报告。

好的,以上就是 Prompt 提示词工程从入门到精通系统教程。通过理解基础理论、掌握设计流程、反复实战迭代,你将能够驾驭大模型,为各类需求提供高质量解决方案。希望对你有帮助~~~

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值