AI论文探讨室·A+·第14期-Learning-based Video Motion Magnification

MIT&Google在ECCV2018上发表的文章,质疑手动设计滤波器的优越性,提出用深度学习直接学习滤波器。设计协同数据集,两帧输入训练,学习滤波器实现实时视频放大,减少振铃伪影,改善噪声特性。系统框架包括编码、控制、解码,无需时间滤波器,但发现其与索引滤波器有相似之处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接

项目地址

简要说明

        这篇文章是MIT&Google在ECCV 2018上发表的一篇文章,相比于我们在13期中介绍的,这篇文章提出质疑:当前流行的主要是依赖手动设计滤波来提取运动表现可能不是最优的方案。本篇作者提出使用深度学习算法来直接学习滤波。为了便于对数据进行训练,我们认真设计一个协同数据集,能够很好地捕获小的运动,使用两帧输入来训练。作者通过实现发现学习滤波能够在真实视频得到高质量结果,和以前相比有较少的振铃伪影和更好的噪声特性。虽然模型在训练中没有使用时间滤波器,作者发现时间滤波器可以与提取图像一起使用来放大到适中倍数,启用基于频率的运动选择。最后,作者发现学习滤波器与之前的索引滤波器具有很多相似之处。

和先前方法比较

系统框架

       该框架主要包含3部分:编码、控制、解码。在进行训练的时候,需要将两个视频帧输入到网络中,以及一个控制参数\alpha,输出是一个放大后的图像。

实验结果

更多《计算机视觉与图形学》知识,可关注下方公众号:

 

 

 

 

 

 

 

 

### Swin Transformer在视频运动放大的实现与应用 Swin Transformer作为一种高效的视觉变换器架构,在处理高分辨率图像和视频方面表现出显著优势。对于视频运动放大技术而言,Swin Transformer通过分层自监督学习方法能够有效捕捉不同尺度下的时空特征[^1]。 #### 实现原理 为了实现在视频中的运动放大效果,采用了一种基于Swin Transformer的框架设计: - **多尺度窗口注意力机制**:利用可变大小的局部窗口来计算自注意分数,从而更好地适应视频帧间的变化特性。 - **层次化结构**:模型被划分为多个阶段,每个阶段负责提取特定级别的空间信息,并逐步聚合这些信息以形成全局理解。 ```python import torch.nn as nn from timm.models.layers import DropPath, trunc_normal_ class SwinTransformerBlock(nn.Module): """ Swin Transformer Block """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim ... ``` 这种特殊的网络配置使得Swin Transformer能够在保持较高时间效率的同时提高对细微动作变化敏感度的能力。 #### 应用场景 该技术广泛应用于以下几个领域: - **医疗影像分析**:增强心脏跳动或其他生理活动细节以便更精确地诊断疾病。 - **体育赛事转播**:突出运动员的动作特点,提供更加生动的比赛解说体验。 - **虚拟现实/增强现实(VR/AR)**:改善交互过程中手部姿态识别精度,使用户体验更为流畅自然。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值