cuda项目出错,no kernel image is available for execution on the device

 解决方案

SET(CUDA_NVCC_FLAGS -gencode arch=compute_61,code=sm_61;-G;-g)

设置arch和code与电脑的显卡匹配,就可以解决。

 

更多《计算机视觉与图形学》知识,可关注下方公众号:

### 解决 CUDA 错误 “no kernel image is available for execution on the device” 当遇到此错误时,通常是因为当前安装的软件包不支持所使用的 GPU 架构。具体来说,在尝试使用 GeForce RTX 3060 进行计算时遇到了兼容性问题[^2]。 #### 检查并更新 PyTorch 安装 由于 GeForce RTX 3060 支持 CUDA 能力 `sm_86`,而现有的 PyTorch 版本仅支持较低版本的架构 (`sm_37`, `sm_50`, `sm_60`, `sm_70`),因此需要重新编译或下载适合该硬件的新版 PyTorch 或者通过官方渠道获取预构建的支持更高 CUDA 计算能力的二进制文件: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 上述命令会安装与 CUDA Toolkit 11.3 兼容的 PyTorch 及其依赖项,这应该能够覆盖到 `sm_86` 的需求。 #### 验证 NVIDIA 驱动程序和 Docker 设置 如果是在容器环境中运行,则还需要确认宿主机上的 NVIDIA 驱动器以及 Docker 中集成的 NVIDIA 插件是否匹配且正常工作。驱动库版本不符可能导致初始化失败等问题[^3]。可以通过以下方式验证环境配置: - **检查驱动状态** 使用 `nvidia-smi` 命令查看显卡及其驱动的状态 - **测试Docker中的NVIDIA功能** 执行简单的测试镜像来确保一切按预期运作: ```bash docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi ``` 以上操作可以排除因驱动或插件引起的潜在冲突。 #### 更新 CUDA 工具链 对于本地开发环境而言,可能也需要升级至最新稳定发布的 CUDA Toolkit 来获得更好的性能优化和支持更多的 GPU 设备特性。详细的设置指南可以在文档中找到更多信息[^1]。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值