随机过程概率空间

σ\sigmaσ代数和最小σ\sigmaσ代数

σ\sigmaσ代数

σ\sigmaσ代数(σ\sigmaσ-algebra)需满足以下条件:
F\mathcal{F}F 是全集 XXX 的子集族,若满足:

  1. 全集包含
    X∈FX \in \mathcal{F}XF
  2. 补集封闭
    A∈FA \in \mathcal{F}AF,则 Ac=X∖A∈FA^c = X \setminus A \in \mathcal{F}Ac=XAF
  3. 可数并封闭
    A1,A2,⋯∈FA_1, A_2, \dots \in \mathcal{F}A1,A2,F,则 ⋃n=1∞An∈F\bigcup_{n=1}^\infty A_n \in \mathcal{F}n=1AnF

最小σ\sigmaσ代数

定义

给定全集 XXX 和子集族 G\mathcal{G}G最小σ\sigmaσ代数(记为 σ(G)\sigma(\mathcal{G})σ(G))是:
满足以下条件的最小的σ\sigmaσ代数:

  1. G⊆σ(G)\mathcal{G} \subseteq \sigma(\mathcal{G})Gσ(G)
  2. 对任意包含 G\mathcal{G}Gσ\sigmaσ代数 F\mathcal{F}F,有 σ(G)⊆F\sigma(\mathcal{G}) \subseteq \mathcal{F}σ(G)F

构造方法

σ(G)=⋂{F:F 是包含 G 的 σ代数} \sigma(\mathcal{G}) = \bigcap \left\{ \mathcal{F} : \mathcal{F} \text{ 是包含 } \mathcal{G} \text{ 的 }\sigma\text{代数} \right\} σ(G)={F:F 是包含 G  σ代数}

示例

  • G={A}\mathcal{G} = \{ A \}G={A}(单个子集),则 σ(G)={∅,A,Ac,X}\sigma(\mathcal{G}) = \{ \emptyset, A, A^c, X \}σ(G)={,A,Ac,X}
  • Borel σ\sigmaσ代数:由实数集 R\mathbb{R}R 上所有开集生成的σ\sigmaσ代数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值