σ\sigmaσ代数和最小σ\sigmaσ代数
σ\sigmaσ代数
σ\sigmaσ代数(σ\sigmaσ-algebra)需满足以下条件:
设 F\mathcal{F}F 是全集 XXX 的子集族,若满足:
- 全集包含:
X∈FX \in \mathcal{F}X∈F - 补集封闭:
若 A∈FA \in \mathcal{F}A∈F,则 Ac=X∖A∈FA^c = X \setminus A \in \mathcal{F}Ac=X∖A∈F - 可数并封闭:
若 A1,A2,⋯∈FA_1, A_2, \dots \in \mathcal{F}A1,A2,⋯∈F,则 ⋃n=1∞An∈F\bigcup_{n=1}^\infty A_n \in \mathcal{F}⋃n=1∞An∈F
最小σ\sigmaσ代数
定义
给定全集 XXX 和子集族 G\mathcal{G}G,最小σ\sigmaσ代数(记为 σ(G)\sigma(\mathcal{G})σ(G))是:
满足以下条件的最小的σ\sigmaσ代数:
- G⊆σ(G)\mathcal{G} \subseteq \sigma(\mathcal{G})G⊆σ(G)
- 对任意包含 G\mathcal{G}G 的σ\sigmaσ代数 F\mathcal{F}F,有 σ(G)⊆F\sigma(\mathcal{G}) \subseteq \mathcal{F}σ(G)⊆F
构造方法
σ(G)=⋂{F:F 是包含 G 的 σ代数} \sigma(\mathcal{G}) = \bigcap \left\{ \mathcal{F} : \mathcal{F} \text{ 是包含 } \mathcal{G} \text{ 的 }\sigma\text{代数} \right\} σ(G)=⋂{F:F 是包含 G 的 σ代数}
示例
- 若 G={A}\mathcal{G} = \{ A \}G={A}(单个子集),则 σ(G)={∅,A,Ac,X}\sigma(\mathcal{G}) = \{ \emptyset, A, A^c, X \}σ(G)={∅,A,Ac,X}
- Borel σ\sigmaσ代数:由实数集 R\mathbb{R}R 上所有开集生成的σ\sigmaσ代数