一、引言
在概率论与数理统计领域,特征函数是极为重要的分析工具。它能将概率论中的诸多问题转化为便于处理的数学分析问题,极大地推动了对随机变量性质及相关理论的研究进展。下面将详细介绍特征函数的定义和性质。
二、定义
设 XXX 为随机变量,其特征函数 φX(t)\varphi_X(t)φX(t) 定义为:
φX(t)=E(eitX),t∈R\varphi_X(t) = E(e^{itX}), \quad t \in \mathbb{R}φX(t)=E(eitX),t∈R
2.1 离散型随机变量情况
若 XXX 是离散型随机变量,取值为 xkx_kxk,对应的概率为 P(X=xk)=pkP(X = x_k)=p_kP(X=xk)=pk,KaTeX parse error: Can't use function '\)' in math mode at position 16: (k = 1,2,\cdots\̲)̲,那么其特征函数为
φX(t)=∑kpkeitxk\varphi_X(t)=\sum_{k}p_ke^{itx_k}φX(t)=∑kpkeitxk
例如,设 XXX 服从参数为 ppp 的两点分布,即 P(X=1)=pP(X = 1)=pP(X=1)=p,P(X=0)=1−pP(X = 0)=1 - pP(X=0)=1−p,则
φX(t)=(1−p)eit×0+peit×1=(1−p)+peit\varphi_X(t)=(1 - p)e^{it\times0}+pe^{it\times1}=(1 - p)+pe^{it}φX(t)=(1−p)eit×0+peit×1=(1−p)+peit
2.2 连续型随机变量情况
若 XXX 是连续型随机变量,概率密度函数为 f(x)f(x)f(x),其特征函数为
φX(t)=∫−∞∞eitxf(x)dx\varphi_X(t)=\int_{-\infty}^{\infty}e^{itx}f(x)dxφX(t)=∫−∞∞eitxf(x)dx
例如,设 XXX 服从正态分布 N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2),概率密度函数 f(x)=12πσe−(x−μ)22σ2f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x - \mu)^2}{2\sigma^2}}f(x)=2πσ1e−2σ2(x−μ)2,则其特征函数
φX(t)=eiμt−12σ2t2\varphi_X(t)=e^{i\mu t-\frac{1}{2}\sigma^2t^2}φX(t)=eiμt−21σ2t2
三、性质
3.1 有界性
∣φX(t)∣≤φX(0)=1|\varphi_X(t)|\leq\varphi_X(0) = 1∣φX(t)∣≤φX(0)=1
证明:因为 ∣φX(t)∣=∣E(eitX)∣≤E(∣eitX∣)|\varphi_X(t)| = |E(e^{itX})|\leq E(|e^{itX}|)∣φX(t)∣=∣E(eitX)∣≤E(∣eitX∣),而 ∣eitX∣=∣cos(tX)+isin(tX)∣=cos2(tX)+sin2(tX)=1|e^{itX}| = |\cos(tX)+i\sin(tX)|=\sqrt{\cos^{2}(tX)+\sin^{2}(tX)} = 1∣eitX∣=∣cos(tX)+isin(tX)∣=cos2(tX)+sin2(tX)=1,所以 ∣φX(t)∣≤E(1)=1|\varphi_X(t)|\leq E(1)=1∣φX(t)∣≤E(1)=1,又 φX(0)=E(ei0×X)=E(1)=1\varphi_X(0)=E(e^{i0\times X}) = E(1)=1φX(0)=E(ei0×X)=E(1)=1。
3.2 连续性
特征函数 φX(t)\varphi_X(t)φX(t) 在 R\mathbb{R}R 上一致连续。
这是由于 ∣φX(t+h)−φX(t)∣=∣E(ei(t+h)X−eitX)∣=∣E(eitX(eihX−1))∣≤E(∣eihX−1∣)|\varphi_X(t + h)-\varphi_X(t)| = |E(e^{i(t + h)X}-e^{itX})| = |E(e^{itX}(e^{ihX}-1))|\leq E(|e^{ihX}-1|)∣φX(t+h)−φX(t)∣=∣E(ei(t+h)X−eitX)∣=∣E(eitX(eihX−1))∣≤E(∣eihX−1∣),利用三角函数的性质及极限知识可以证明当 h→0h\rightarrow0h→0 时,E(∣eihX−1∣)→0E(|e^{ihX}-1|)\rightarrow0E(∣eihX−1∣)→0,从而得出一致连续性。
3.3 共轭性
φX(−t)=φX(t)‾\varphi_X(-t)=\overline{\varphi_X(t)}φX(−t)=φX(t)
其中 z‾\overline{z}z 表示复数 zzz 的共轭。
证明:φX(−t)=E(e−itX)\varphi_X(-t)=E(e^{-itX})φX(−t)=E(e−itX),而 e−itX=cos(−tX)+isin(−tX)=cos(tX)−isin(tX)=cos(tX)+isin(tX)‾=eitX‾e^{-itX}=\cos(-tX)+i\sin(-tX)=\cos(tX)-i\sin(tX)=\overline{\cos(tX)+i\sin(tX)}=\overline{e^{itX}}e−itX=cos(−tX)+isin(−tX)=cos(tX)−isin(tX)=cos(tX)+isin(tX)=eitX,所以 φX(−t)=E(eitX‾)=E(eitX)‾=φX(t)‾\varphi_X(-t)=E(\overline{e^{itX}})=\overline{E(e^{itX})}=\overline{\varphi_X(t)}φX(−t)=E(eitX)=E(eitX)=φX(t)。
3.4 线性变换性质
设 Y=aX+bY = aX + bY=aX+b,其中 a,b∈Ra,b\in\mathbb{R}a,b∈R,则
φY(t)=eitbφX(at)\varphi_Y(t)=e^{itb}\varphi_X(at)φY(t)=eitbφX(at)
证明:φY(t)=E(eitY)=E(eit(aX+b))=E(eitbeiatX)=eitbE(eiatX)=eitbφX(at)\varphi_Y(t)=E(e^{itY})=E(e^{it(aX + b)})=E(e^{itb}e^{iatX})=e^{itb}E(e^{iatX})=e^{itb}\varphi_X(at)φY(t)=E(eitY)=E(eit(aX+b))=E(eitbeiatX)=eitbE(eiatX)=eitbφX(at)。
3.5 独立随机变量和的性质
若 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn 相互独立,Y=∑k=1nXkY=\sum_{k = 1}^{n}X_kY=∑k=1nXk,则
φY(t)=∏k=1nφXk(t)\varphi_Y(t)=\prod_{k = 1}^{n}\varphi_{X_k}(t)φY(t)=∏k=1nφXk(t)
证明:因为 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn 相互独立,所以 E(eitY)=E(eit(X1+X2+⋯+Xn))=E(eitX1eitX2⋯eitXn)E(e^{itY})=E(e^{it(X_1 + X_2+\cdots+X_n)})=E(e^{itX_1}e^{itX_2}\cdots e^{itX_n})E(eitY)=E(eit(X1+X2+⋯+Xn))=E(eitX1eitX2⋯eitXn),由独立性可知 E(eitX1eitX2⋯eitXn)=E(eitX1)E(eitX2)⋯E(eitXn)=∏k=1nφXk(t)E(e^{itX_1}e^{itX_2}\cdots e^{itX_n})=E(e^{itX_1})E(e^{itX_2})\cdots E(e^{itX_n})=\prod_{k = 1}^{n}\varphi_{X_k}(t)E(eitX1eitX2⋯eitXn)=E(eitX1)E(eitX2)⋯E(eitXn)=∏k=1nφXk(t)。
是的,特征函数还有其他一些性质,以下为你继续介绍:
3.6 矩的存在性与特征函数的导数
如果随机变量 XXX 的 nnn 阶矩 E(Xn)E(X^n)E(Xn)存在,则特征函数 φX(t)\varphi_X(t)φX(t) 的 nnn 阶导数 φX(n)(t)\varphi_X^{(n)}(t)φX(n)(t) 存在,且
E(Xn)=i−nφX(n)(0)E(X^n)=i^{-n}\varphi_X^{(n)}(0)E(Xn)=i−nφX(n)(0)
证明:对特征函数 (\varphi_X(t)=E(e^{itX})) 求 (n) 阶导数,利用控制收敛定理可以交换求导与期望的顺序,即
φX(n)(t)=E((iX)neitX)\varphi_X^{(n)}(t)=E\left((iX)^ne^{itX}\right)φX(n)(t)=E((iX)neitX)
令 t=0t = 0t=0,可得 E(Xn)=i−nφX(n)(0)E(X^n)=i^{-n}\varphi_X^{(n)}(0)E(Xn)=i−nφX(n)(0)。
例如,对于正态分布 N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2),已知其特征函数为 φX(t)=eiμt−12σ2t2\varphi_X(t)=e^{i\mu t-\frac{1}{2}\sigma^2t^2}φX(t)=eiμt−21σ2t2,对其求一阶导数:
φX′(t)=iμeiμt−12σ2t2−iσ2teiμt−12σ2t2\varphi_X^{\prime}(t)=i\mu e^{i\mu t-\frac{1}{2}\sigma^2t^2}-i\sigma^2t e^{i\mu t-\frac{1}{2}\sigma^2t^2}φX′(t)=iμeiμt−21σ2t2−iσ2teiμt−21σ2t2
令 t=0t = 0t=0,可得 E(X)=μE(X)=\muE(X)=μ,这与正态分布的均值性质相符。
3.7 唯一性
随机变量的分布函数 F(x)F(x)F(x)与特征函数 φX(t)\varphi_X(t)φX(t) 是一一对应的。即已知特征函数 φX(t)\varphi_X(t)φX(t),可以唯一确定随机变量 XXX 的分布函数 F(x)F(x)F(x);反之,已知分布函数 F(x)F(x)F(x),也可以唯一确定特征函数 φX(t)\varphi_X(t)φX(t)。
这一性质在概率论中具有重要意义,它为通过特征函数研究随机变量的分布提供了理论依据。例如,在证明两个随机变量具有相同分布时,只需证明它们的特征函数相同即可。