PTA天梯赛 L1-067 洛希极限 (10 分)

本文介绍了洛希极限的概念,用于判断小天体是否会因靠近大天体而被撕碎。通过给定的密度比值、天体属性和距离比例,可以计算出洛希极限并确定天体的命运。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

科幻电影《流浪地球》中一个重要的情节是地球距离木星太近时,大气开始被木星吸走,而随着不断接近地木“刚体洛希极限”,地球面临被彻底撕碎的危险。但实际上,这个计算是错误的。

洛希极限(Roche limit)是一个天体自身的引力与第二个天体造成的潮汐力相等时的距离。当两个天体的距离少于洛希极限,天体就会倾向碎散,继而成为第二个天体的环。它以首位计算这个极限的人爱德华·洛希命名。(摘自百度百科)

大天体密度与小天体的密度的比值开 3 次方后,再乘以大天体的半径以及一个倍数(流体对应的倍数是 2.455,刚体对应的倍数是 1.26),就是洛希极限的值。例如木星与地球的密度比值开 3 次方是 0.622,如果假设地球是流体,那么洛希极限就是 0.622×2.455=1.52701 倍木星半径;但地球是刚体,对应的洛希极限是 0.622×1.26=0.78372 倍木星半径,这个距离比木星半径小,即只有当地球位于木星内部的时候才会被撕碎,换言之,就是地球不可能被撕碎。

本题就请你判断一个小天体会不会被一个大天体撕碎。

输入格式:

输入在一行中给出 3 个数字,依次为:大天体密度与小天体的密度的比值开 3 次方后计算出的值(≤1)、小天体的属性(0 表示流体、1 表示刚体)、两个天体的距离与大天体半径的比值(>1 但不超过 10)。</

### 关于天梯赛 L1-067 洛希极限问题的 Java 实现与解题思路 #### 题目理解 题目描述了洛希极限的概念,即一个天体自身的引力与其受到另一个天体引起的潮汐力相等时的距离。当两者的距离小于该极限值时,较小的天体会瓦解并可能形成较大的天体周围的环结构。 对于编程实现而言,重点在于通过给定的数据来判断两个星球之间的关系是否满足特定条件下的洛希极限情况[^1]。 #### 数据输入处理 程序首先读取一系列测试案例的数量 `T` ,之后依次接收每一对星体的信息,包括它们的质量比例因子以及半径比率等因素。这些参数用于后续计算洛希极限的具体数值。 #### 计算方法解析 根据物理公式,可以得知洛希极限 \(d\) 的表达式如下: \[ d = 2.44R\left(\frac{\rho_M}{\rho_m}\right)^{1/3} \] 其中: - \( R \) 表示较大质量物体的平均半径; - \( \rho_M / \rho_m \) 是指两者密度之比; 由于本题简化设定为球形均匀布,则可进一步转换成基于质量和体积的关系来进行估算。具体到代码层面,就是利用已知的比例系数完成相应的运算逻辑。 #### 结果判定输出 最后依据求得的结果对比实际间距,从而得出结论——如果当前距离低于理论上的洛希界限则输出"Yes"表示会发生裂现象;反之则给出"No"。 ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int T = Integer.parseInt(scanner.nextLine()); while (T-- > 0){ String[] parts = scanner.nextLine().split(" "); double massRatio = Double.parseDouble(parts[0]); double radiusRatio = Double.parseDouble(parts[1]); // Simplified Roche Limit formula calculation based on given ratio values. final double ROCHE_CONSTANT = 2.44; double rocheLimit = ROCHE_CONSTANT * Math.pow(massRatio, 1./3.) * radiusRatio; System.out.println(rocheLimit >= 1 ? "No":"Yes"); } scanner.close(); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值