链接:https://www.luogu.org/problem/show?pid=2707#sub
解题思路:
一道非常有趣的数学题。
首先可以得出门票的收益=x*(ai-bi*x,0); 如果枚举每个可能的x的话肯定会超时。我们观察式子 -b*x*x+a*x 发现是个二次函数,那它一定有最高点,即x的最大范围,因为x必须取整数,这里的技巧是max+0.5取整。
并且二次函数还有单调性。因为x必须为整数,我们可以将从0到最大的x区间化为[0,1].[1,2],[2,3]….几段区间,因为区间每段区间获得的收益是递减的,我们可以用堆来维护。
首先先将每个景点的票的[0,1]段压入堆中,但是可能有某些个景点的[1,2]段…等会比其他景点的[0,1]段最优,所以要逐个验证。
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#define pr pair<long long,int>
using namespace std;
priority_queue<pr >q;
int n,k,cnt;
long long maxx[100005],a[100005],b[100005],last[100005],t[100005];
long long big(int x){
double aa=(double)a[x];
double bb=(double)b[x];
aa=aa/(2*bb);
return aa+0.5;
}
void work(){
long long ans=0;
while(!q.empty()){
if (cnt>=k) break;
pr que=q.top();q.pop();
ans+=que.first;cnt++;
int v=que.second;
if (t[v]>=maxx[v]) continue;
t[v]++;
long long tmp=t[v]*(a[v]-b[v]*t[v]);
pr pp(tmp-last[v],v);
last[v]=tmp;
q.push(pp);
}
cout<<ans;
return ;
}
int main(){
cin>>n>>k;
for (int i=1;i<=n;i++){
scanf("%d%d",&a[i],&b[i]);
maxx[i]=big(i);
t[i]=0;
last[i]=max(a[i]-b[i],0LL);
if (t[i]>=maxx[i]) continue;
t[i]++;
q.push(pr(last[i],i));
}
work();
return 0;
}