- 博客(955)
- 收藏
- 关注

原创 一文搞懂通义千问(Qwen)相关的核心概念
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
2024-11-06 10:28:24
9891

原创 大模型常用评测基准汇总(通用评测基准、具体评测基准),看这一篇就够了!
在评测集维度,OpenAI和Google会直接使用Chatbot Arena的结果,在对大模型进行评估时,较为简单、高效、易操作的方式是关注Chatbot Arena的leaderboard。目前所有大模型综合排行榜目前中文大模型排行榜SuperCLUE琅琊版6月排名在评估中文大模型的能力时SuperCLUE会作为重要指标,从榜单上可以看出中文大模型的效果还是差于国外大模型,这种落后不能单一归结为某一个原因,我们需要认识到在算力、算法、数据中的各种不足。征途漫漫,惟有奋斗。
2024-09-26 07:30:00
8233

原创 大模型超详细盘点!常用的大模型及其优缺点、有潜力的大模型、国内大模型行业落地的现况、国内大模型优势、挑战与前景
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
2024-09-21 09:55:42
8737
原创 大模型RAG从入门到精通(五)RAG中的长上下文管理策略
上下文摘要是 RAG 系统中一种更复杂的上下文长度管理方法,我们在构建最终上下文的过程中应用文本摘要技术。一种可行的方法是使用一个额外的语言模型(通常规模较小,且经过摘要任务训练),用于对检索到的大量文档进行摘要。摘要任务可以是提取式的,也可以是抽象式的。提取式识别并提取相关的文本段落,抽象式从头生成摘要,对原始文本块进行重新表述和精简。此外,一些 RAG 解决方案使用启发式方法来评估文本片段(例如文本块)的相关性,并丢弃相关性较低的文本块。
2025-05-11 08:30:00
445
原创 大模型RAG从入门到精通(四)检索增强生成评估框架
(LLM)的局限性和克服其诸多限制方面发挥了关键作用。通过整合检索器,RAG 增强了响应的相关性和事实准确性:它只需实时利用外部知识源(例如矢量文档库),并在原始用户查询或提示中添加相关的上下文信息,然后将其传递给 LLM 进行输出生成。对于那些深入 RAG 领域的人来说,一个自然而然的问题出现了:我们如何评估这些远非简单的系统?为此,存在几个框架,例如,它提供了超过 14 种评估指标来评估幻觉和忠实度等标准;,以其模块化和简单性而闻名,可以在自定义管道中进行评估;
2025-05-10 09:00:00
484
原创 大模型RAG从入门到精通(二)RAG工作流程
尽管如今随着人工智能的迅猛发展,各种增强版和更复杂的 RAG 版本几乎每天都在涌现,但要理解最新的 RAG 方法,第一步是理解经典的 RAG 工作流程。Retrieval-Augmented Generation (RAG) 系统是一种创新的架构,它结合了传统的语言模型(LM)和信息检索(IR)技术的优点,以提供更加精准和上下文相关的文本生成能力。
2025-05-09 14:58:50
851
原创 大模型RAG从入门到精通(一)LLM 的能力和局限性,RAG(检索增强生成)
(AI)的一个领域,旨在教会计算机理解人类的书面和口头语言,并运用这些语言与人类互动。虽然传统的 NLP 方法已研究数十年,但近年来出现的(LLM) 几乎主导了该领域的所有发展。LLM 通过将复杂的深度学习架构与能够分析语言中复杂模式和相互依赖关系的自注意力机制相结合,彻底改变了 NLP 和整个人工智能领域。LLM 能够处理广泛的语言生成和语言理解任务,并具有广泛的应用范围,例如对话聊天机器人、深度文档分析、翻译等等。
2025-05-09 14:29:31
989
原创 大模型论文解析(三)自主代理的行为控制与安全评估
大型语言模型的兴起催生了各种自主AI代理(autonomous agents),它们能在较少人类干预下连贯地执行复杂任务(如自动编写代码、联网操作等)。然而,随着代理自主性的提高,其潜在风险也显著增加。2025年初,有学者从伦理和治理角度对自主代理提出了警示,也有研究探索衡量自治程度和自动红队测试的方法。
2025-05-07 07:00:00
734
原创 大模型论文解析(二)对抗攻击与鲁棒防御
除了对齐策略本身的改进,大模型在对抗性攻防方面也是近期研究的热点。对抗攻击指恶意构造输入诱使模型产生错误或有害输出,而鲁棒防御则针对这些攻击增强模型的稳定性和安全性。
2025-05-06 17:45:40
616
原创 大模型论文解析(一)模型对齐与安全训练
模型对齐(Alignment)是指通过附加训练让大模型的行为符合预期的安全和伦理规范,例如拒绝不当请求、不输出有害内容等。最新的多篇论文均聚焦于如何改进和评估大模型的对齐效果,以及对齐过程可能带来的副作用。
2025-05-06 17:38:02
633
原创 2025年最新大模型学习路线,自学零基础入门到精通!看这一篇就够了!
初识大模型OpenAI模型的发展历程主流国产大模型大模型赋能行业分析未来展望:大模型的趋势与挑战。
2025-05-05 19:35:07
939
原创 MCP从入门到精通(八)使用Upsonic 构建MCP智能体
本教程向大家介绍了MCP,并解释了为什么它在开发者社区中变得如此流行。除了上述内容,我们还在六种不同的Python和TypeScript框架中实现了MCP,用于构建基于大语言模型(LLM)的应用、AI助手和智能体。然而,MCP的强大之处也伴随着一些挑战。当你为你的项目寻找MCP工具时,可能会发现难以评估或验证其质量,也难以确定其在你的AI项目中的具体应用。这是因为其工具的搜索和发现机制尚未标准化。此外,由于不同的MCP服务器提供商使用不同的架构,其配置也无法提供一致的用户体验。
2025-05-04 10:15:00
605
原创 MCP从入门到精通(七)使用Agno AI构建MCP智能体
Agno 是一个用于构建复杂代理工作流的 Python 框架。它因其简洁、易用以及与 MCP 服务器的无缝集成而受到欢迎。本节的示例 MCP 实现与由四个不同的贡献代理组成的多智能体团队协作,包括 Airbnb、Google Maps、网络搜索和天气 MCP 代理。这些 Agno 多智能体协作,旨在提供关于特定地点旅行的信息。从Agno的GitHub仓库获取完整的源代码。安装所需的包,完成所有上述配置,然后运行完整的GitHub示例代码,应该会显示类似于此预览的输出。
2025-05-04 09:00:00
487
原创 MCP从入门到精通(六)使用Chinlit AI构建MCP智能体
Chainlit 是一个用于用 Python 构建 AI 应用的平台。它内置支持 MCP 服务器,因此你可以配置你的应用程序以发现可用的 MCP 工具,并将工具调用集成到应用流程中,以实现更优的效果。你还可以将 Chainlit 应用与服务器推送事件(SSE)和命令行(stdio)等服务进行集成。在以下示例中,我们将把一个 Chainlit 应用连接到 Linear MCP 服务器,以便应用可以管理 Linear 的问题、项目和团队。
2025-05-03 08:30:00
829
原创 MCP从入门到精通(五)使用LangChain AI构建MCP智能体
LangChain支持使用工具调用(tool-calling)与MCP集成。这种支持允许你设置Python函数,以访问不同的MCP服务器并获取工具,从而在AI项目中执行各种任务。以下示例代码连接到一个安全的MCP文件系统服务器,使大型语言模型(LLM)能够准确回答你提供的任何文件相关的问题。所有必需的包安装完毕后,如果你向项目中添加了一个文件,并在 Python 脚本中按照示例代码(如上所示的 ./readme.md)引用它,你应该会看到类似如下的输出。
2025-05-02 09:00:00
526
原创 MCP从入门到精通(四)使用PraisonAI构建MCP智能体
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。,以动态、形象的方式展示技术概念,
2025-05-01 07:15:00
819
原创 MCP从入门到精通(三)使用OpenAI Agents SDK构建MCP智能体
使用Agents SDK的MCP集成的一个优点是它在OpenAI的控制面板中内置的MCP智能体监控系统。行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,
2025-04-30 09:00:00
1010
原创 Qwen3 系列模型终于正式亮相了!
今天凌晨,从昨晚开始预热、备受全球 AI 圈关注的 Qwen3 系列模型终于正式亮相了!Qwen3 模型依旧采用,全球开发者、研究机构和企业均可免费在 HuggingFace、魔搭社区等平台下载模型并商用,也可以通过阿里云百炼调用 Qwen3 的 API 服务。具体来讲,下表展示了这些模型的详细参数:Hugging Face 已经上线了 22 个不同的 Qwen3 系列模型目前,Qwen3 系列中较大的三款模型也已经上线了 Qwen Chat 网页版和手机 App。
2025-04-29 10:22:42
774
原创 MCP从入门到精通(二)使用MCP的优势、不同的MCP服务类型、不同的MCP工具库
你可以访问数百个现成的MCP工具,用于你的AI项目。行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。Composio Registry\:Composio的基于SSE的MCP服务器,便于将工具与不同的AI框架集成,构建应用。
2025-04-29 08:30:00
780
原创 MCP从入门到精通(一)什么是MCP?MCP工作原理,具备工具集成的AI Agent
可以将MCP视为大语言模型(LLM)的第三次演进。在第一次进化阶段,LLM仅能基于训练数据中的信息准确回答用户提问,若遇到训练数据之外的查询,它们便无法给出有效回应,因为此时LLM尚未具备调用外部工具的能力。到了第二次进化阶段,我们为LLM提供了额外的上下文(工具),虽然这些工具的交互方式并不直观,但已能帮助LLM更精准地预测和响应用户意图。而第三次进化依然由LLM和工具构成,但这次我们构建了完善的底层架构,使其不仅能接入外部应用程序,还能确保整个系统的可维护性。
2025-04-28 11:56:37
983
原创 大模型RAG | 什么是RAG(检索增强生成)?为什么需要 RAG?
RAG(Retrieval Augmented Generation, 检索增强生成)是一种技术框架,其核心在于当 LLM 面对解答问题或创作文本任务时,首先会在大规模文档库中搜索并筛选出与任务紧密相关的素材,继而依据这些素材精准指导后续的回答生成或文本构造过程,旨在通过此种方式提升模型输出的准确性和可靠性。
2025-04-25 20:05:56
748
原创 大模型开发平台Dify(二)如何在Dify平台搭建Agent?
在Dify平台上,通过选择模型、编写提示、添加工具与知识库、配置推理模式及对话开启器,最后进行调试预览并发布为Webapp,实现Agent的创建与部署。
2025-04-22 19:32:21
953
原创 大模型开发平台Dify(一)什么是Dify?如何将文档上传到Dify知识库构建RAG?
Dify是一个开源的大语言模型(LLM)应用开发平台,旨在简化和加速生成式AI应用的创建和部署,为开发者提供了一个用户友好的界面和一系列强大的工具,使他们能够快速搭建生产级的AI应用。Dify通过可视化编排、模块化设计和丰富的功能组件(如RAG、Agent、多模型支持),帮助开发者快速构建生产级AI应用,显著降低技术门槛。Dify提供四种基于LLM构建的应用程序,可以针对不同的应用场景和需求进行优化和定制。1. 聊天助手:基于LLM的对话交互(如客服机器人)2. 文本生成:自动化创作、翻译等任务。
2025-04-22 19:29:15
949
原创 大模型预训练 | 强化学习中常用的三大采样方法:重要性采样、拒绝采样、多级蒙特卡洛
重要性采样(Importance Sampling)主要是通过引入一个提议分布q(x),从中采样,然后通过权重调整来估计目标分布p(x)下的期望。核心是计算每个样本的权重w=p(x)/q(x),然后加权平均。优点是所有样本都被利用,适合高维积分和计算期望,但缺点是如果q(x)和p(x)差异大,方差会很高,需要技巧来减少方差。比如参考中提到“重要性采样的效率取决于行为策略和目标策略之间的重叠程度”,方差大的时候效果差。拒绝采样(Rejection Sampling)
2025-04-21 16:58:21
841
原创 大模型论文 | 谷歌发布321个真实世界生成式AI应用案例、AI科学家v2,首篇完全AI生成论文通过同行评审、强化学习显著提升小模型心智理论能力
1、 谷歌发布321个真实世界生成式AI应用案例,创业者的无限灵感宝库!2、AI科学家2.0:首篇完全AI生成论文通过同行评审3、 思维可视化:新研究"思想景观"工具助力理解大模型推理过程4、 强化学习显著提升小模型心智理论能力5、 SQL-R1:通过强化学习训练的自然语言到SQL推理模型6、 ZClip:大模型预训练的自适应梯度爆炸缓解技术谷歌发布了一份包含321个来自全球顶尖机构的生成式AI应用案例清单,为企业提供了无限商业创意。
2025-04-15 14:08:08
658
原创 一文搞懂大模型数据标注 | 什么是X-AnyLabeling?为什么选择X-AnyLabeling?如何安装X-AnyLabeling?
X-AnyLabeling 是一款开源的、工业级数据标注工具,专为深度学习模型训练提供高效、精准的数据标注解决方案。X-AnyLabeling无缝集成多种深度学习算法(如 Grounding-DINO、Grounding-SAM),支持图像、视频、文本等多模态数据的自动化标注,适用于目标检测、图像分割、OCR 等复杂任务。
2025-04-15 13:48:44
719
原创 2025年,如何抓住风口?快速掌握AI大模型应用开发技术,先人一步!
2025开年,AI技术打得火热,正在改变程序员的职业命运:阿里云核心业务全部接入Agent体系;字节跳动30%后端岗位要求大模型开发能力;腾讯、京东、百度开放招聘技术岗,80%与AI相关……大模型正在重构技术开发范式,业务面临转型,领导要求用RAG优化知识库检索,你不会;带AI团队,微调大模型要准备多少数据,你不懂;想转型大模型应用开发工程师等相关岗,没项目实操经验……这不是技术焦虑,而是职业生存危机!曾经热门的开发框架、大数据工具等,已不再是就业的金钥匙。
2025-04-14 15:36:34
912
原创 大模型论文 | 反思能力其实从预训练就开始了,AI并非后天习得、大语言模型如何提升AI可解释性综述
1、 反思能力其实从预训练就开始了,AI并非后天习得2、大语言模型如何提升AI可解释性综述3、强化学习后训练如何放大预训练行为特征研究者发现,。这项研究通过在思维链中故意引入错误,测试模型是否能够识别并纠正这些错误,从而到达正确答案。研究结果表明,这种自我纠正能力在预训练早期就已出现,并随着预训练的进行而稳步提高。例如,经过。研究者区分了两种反思类型:情境反思(模型检查其他来源创建的推理链)和自我反思(模型考虑自己的推理过程)。
2025-04-14 14:43:54
590
原创 大模型入门到精通!构建AI Agent时最常遇到的五个难题以及解决方案
构建强制执行这些规范的验证逻辑,并从一小组定义明确的工具开始,而不是许多定义松散的工具。定期监控来查看哪些工具最有效以及哪些定义需要改进。
2025-04-13 09:45:00
1165
原创 斯坦福大学最新发布《人工智能指数报告(2025)》(附原文PDF)
就在刚刚,斯坦福大学最新发布的《人工智能指数报告(2025)》给出了一份。今年是第 8 版,共计 456 页,本文会用大白话。无论你是否对 AI 感兴趣,都强烈建议你读完。因为如今这场 AI 革命,没有人是旁观者。话不多说,直接开始。
2025-04-12 11:55:47
1020
原创 大模型面试解析 | 如何解决PPO算法中方差大和训练策略不稳定的现象?
完全重用旧数据的问题本质是分布偏移下的高方差灾难,而PPO通过策略约束机制(Clipping/KL惩罚)将重要性权重的方差控制在合理范围内,实现了“有限重用”的稳定训练。这一设计是PPO成为主流算法的重要原因。
2025-04-12 11:51:13
463
原创 大模型 | 谷歌发布Agent2Agent(A2A)协议:AI智能体的「通用语言」
今天凌晨,谷歌在Google Cloud Next大会上发布了Agent2Agent(A2A)协议,这一技术标准被业界称为“AI智能体协作的里程碑”。与过往聚焦应用场景的AI协议不同,A2A直指智能体互操作的核心技术难题。本文将从协议架构、协作机制、安全设计等维度,拆解其背后的技术革命。
2025-04-11 18:56:57
1329
原创 大语言模型 | LLM文本生成的核心步骤详细解析!
一切的开始,来自用户的输入。你可以输入一个提示、一个问题,或者是一段未完成的句子,模型会基于这个“起点”继续生成内容。为了让模型理解文本,首先需要将文字拆解成更小的单元——Token。Token 可能是一个词、一个子词,甚至是一个字符,具体取决于使用的分词器(如 BPE、WordPiece 等)。比如“Hello, I’m an AI assistant.”可能会被拆成[‘Hello’, ‘,’, ‘I’, “'m”, ‘an’, ‘AI’, ‘assistant’, ‘.’]。
2025-04-11 17:40:38
625
原创 大模型RAG(检索增强生成) :什么是RAG?为什么需要 RAG?RAG 主要包含哪些模块?
RAG(Retrieval Augmented Generation, 检索增强生成)是一种技术框架,其核心在于当 LLM 面对解答问题或创作文本任务时,首先会在大规模文档库中搜索并筛选出与任务紧密相关的素材,继而依据这些素材精准指导后续的回答生成或文本构造过程,旨在通过此种方式提升模型输出的准确性和可靠性。
2025-04-10 12:02:24
643
原创 大模型应用开发 | 一篇教你使用LangGraph、MCP 和 Ollama 打造多智能体聊天机器人
本文教你如何使用 LangGraph、MCP 和 Ollama 打造一个多智能体(Multi-Agent)聊天机器人。MCP 是 Model Context Protocol(模型上下文协议)的简称。一些开发者将其比作“为 AI 打造的 USB-C 接口”。尽管 MCP 去年才发布,但最近它突然流行起来,这也引发了关于它的“花期”能持续多久的讨论。
2025-04-09 14:01:27
721
1
原创 大模型应用开发入门(二)模型使用:用大模型+提示词做翻译、用大模型+Agent做计算器
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。该方案取得了意想不到的效果,针对长句翻译成短句组合形式, 相比官方的来看,更像是修道者的口吻,但针对一些特殊短句用法,仍然不够理想。现在主流的方式都在慢慢弱化微调,因为费时费力,还不一定起到正向的效果,更多的工程实践是将提示词复杂化动态化,工程上做更多的兜底工作。,表现仍然可以,这就带来了对自然语言的容错,会像人一样去思考,而不是固定死的逻辑。
2025-04-08 17:30:00
888
原创 大模型应用开发入门(一)模型基础:大模型是怎么实现记忆的?RAG检索增强生成、ReAct(Reason+Act)
大模型作为新兴领域,不断地冒出来新的专有术语和新的概念,让大家觉得很神秘,捉摸不透。但是,本次分享最主要就是大模型的基本范式,通过范式将这些神秘感去除。大模型虽然很厉害,很神秘,但作为使用人员,门槛是非常非常非常低的。
2025-04-08 13:03:15
898
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人