ShardingSphere核心解析

📕我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)(进阶篇)、(架构篇)、《解密程序员的思维密码——沟通、演讲、思考的实践》作者、清华大学出版社签约作家、Java领域优质创作者、CSDN博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。

📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、SpringMVC、SpringCloud、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RocketMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。

📙不定期分享高并发、高可用、高性能、微服务、分布式、海量数据、性能调优、云原生、项目管理、产品思维、技术选型、架构设计、求职面试、副业思维、个人成长等内容。

Java程序员廖志伟

💡在这个美好的时刻,笔者不再啰嗦废话,现在毫不拖延地进入文章所要讨论的主题。接下来,我将为大家呈现正文内容。

CSDN

ShardingSphere 知识点详解

一、核心分片机制

分片策略

ShardingSphere 的核心分片机制是实现数据库分片的基础,它通过将数据分散存储到多个数据库节点上,有效地提高了系统性能和可扩展性。分片策略是分片的核心,它决定了如何将数据分布到不同的分片上。

精确分片算法

精确分片算法根据数据的主键值直接确定数据所在的分片。这种算法适用于数据量较小,且数据分布均匀的场景。例如,可以使用模运算(MOD)将数据均匀分配到不同的分片。在实现上,可以通过计算主键值与分片数量的模,得到数据所属的分片编号。

范围分片算法

范围分片算法根据数据的值范围将数据分配到不同的分片。这种算法适用于数据量较大,且数据分布不均匀的场景。例如,根据时间戳将数据按年、月、日等时间范围进行分片。在实现上,可以通过设置分片键的值范围,将数据分配到对应的分片。

复合分片算法

复合分片算法结合了精确分片和范围分片,根据多个维度将数据分配到不同的分片。这种算法适用于数据量较大,且数据分布复杂的情况。例如,可以根据用户ID和时间戳进行复合分片。在实现上,可以通过组合多个分片键的值,确定数据所属的分片。

强制路由策略

强制路由策略用于在查询时指定数据必须访问的分片,以确保查询数据的一致性和准确性。在实现上,可以通过在查询语句中添加路由信息,指定数据所属的分片。

分布式事务

ShardingSphere 支持分布式事务,确保在分片数据库环境下事务的原子性、一致性、隔离性和持久性(ACID特性)。在实现上,可以通过集成数据库的XA接口来实现分布式事务。

XA事务实现

XA事务是一种两阶段提交协议,ShardingSphere 通过集成数据库的XA接口来实现分布式事务。在实现上,需要确保所有参与事务的数据库节点都支持XA事务。

Sega事务模型

ShardingSphere 还支持Seata事务模型,这是一种基于消息传递的事务协调协议。在实现上,Seata通过分布式协调器来管理事务状态,确保事务的一致性。

柔性事务补偿

柔性事务补偿是一种在分布式系统中处理事务失败的方法,它通过在业务层面进行补偿操作来恢复事务状态。在实现上,需要根据业务逻辑设计补偿策略,确保事务的最终一致性。

二、读写分离体系

负载均衡

读写分离体系通过将读操作和写操作分配到不同的数据库节点上,实现负载均衡,提高系统性能。在实现上,可以使用轮询、最少连接数、响应时间等策略进行负载均衡。

权重分配策略

权重分配策略决定了读操作在各个读节点之间的分配策略,通常根据节点的性能和负载进行权重分配。在实现上,可以通过设置不同的权重值,调整读操作在各个节点之间的分配比例。

故障自动剔除

当某个读节点发生故障时,读写分离体系应自动将其从负载均衡策略中剔除,以防止数据不一致。在实现上,可以通过心跳机制检测节点状态,当节点故障时,将其从负载均衡策略中剔除。

连接池管理

连接池管理是读写分离体系的重要组成部分,它负责管理数据库连接的创建、释放和复用。在实现上,可以使用连接池技术,如HikariCP、Druid等,提高连接的创建和销毁效率。

数据一致性

在读写分离体系中,保证数据一致性是至关重要的。ShardingSphere 通过主从同步、强一致性读取等机制来实现数据一致性。在实现上,可以通过主从复制、读写分离策略等手段保证数据一致性。

主从延迟检测

通过检测主从数据库之间的延迟,可以动态调整读写分离策略,确保数据一致性。在实现上,可以通过定时任务检测主从延迟,根据延迟情况调整读写分离策略。

强制主库路由

在需要保证数据一致性的场景下,可以强制将写操作路由到主库。在实现上,可以在应用层或数据库层面添加路由规则,确保写操作路由到主库。

读写分离+分片组合

将读写分离与分片机制结合,可以实现更高级别的数据库架构,如主从复制分片集群。在实现上,需要同时考虑读写分离和分片策略,确保系统的高可用性和高性能。

三、分布式治理

弹性伸缩

弹性伸缩是分布式治理的关键,ShardingSphere 支持在线分片变更和数据再平衡,以适应业务增长。在实现上,可以通过动态调整分片策略和数据分布,实现弹性伸缩。

在线分片变更

在线分片变更允许在不停机的情况下调整分片策略,无需停机重启数据库。在实现上,可以通过修改配置文件或使用API接口,实现在线分片变更。

数据再平衡

数据再平衡确保数据均匀分布在各个分片上,避免某个分片过载。在实现上,可以通过定时任务或触发器,实现数据再平衡。

资源隔离策略

资源隔离策略确保不同业务或不同分片之间的资源不受干扰,提高系统的稳定性和可维护性。在实现上,可以通过设置不同的资源池、隔离级别等手段,实现资源隔离。

集群管控

集群管控包括配置中心集成、分布式锁实现和节点状态探活等功能,以实现分布式集群的有效管理。在实现上,可以通过配置中心管理集群配置,使用分布式锁保证数据一致性,通过节点状态探活保证集群健康。

四、数据迁移方案

全量迁移

全量迁移是指将所有数据从源数据库迁移到目标数据库。ShardingSphere 提供一致性校验和断点续传等功能,确保数据迁移的可靠性和效率。在实现上,可以通过数据库导出、文件传输、数据库导入等步骤完成全量迁移。

增量同步

增量同步是指将源数据库的增量数据同步到目标数据库。ShardingSphere 通过解析Binlog来实现增量同步。在实现上,需要解析Binlog文件,提取增量数据,并将其同步到目标数据库。

存量数据切割

存量数据切割是指将现有数据根据分片策略进行重新切割,以适应业务需求变化。在实现上,需要根据分片策略,将数据重新分配到不同的分片。

灰度切换验证

灰度切换验证是指将新功能或新分片策略逐步推广到部分用户或部分分片,以验证其稳定性和性能。在实现上,可以通过控制台操作、API接口等手段,实现灰度切换验证。

五、生态扩展组件

ShardingSphere-Proxy

ShardingSphere-Proxy 是一个基于数据库协议的代理服务器,它提供协议适配层、流量治理和多租户支持等功能。在实现上,ShardingSphere-Proxy 通过监听数据库请求,根据分片策略和读写分离策略进行路由和转发。

ShardingSphere-JDBC

ShardingSphere-JDBC 是一个数据源连接层,它优化连接模式、实现多数据源聚合和Hint管理器等功能。在实现上,ShardingSphere-JDBC 通过封装数据库连接,实现多数据源连接和路由。

总结

ShardingSphere 作为一款强大的分布式数据库中间件,涵盖了从数据分片、读写分离到分布式治理等多个方面。通过深入理解这些知识点,可以更好地利用 ShardingSphere 构建高可用、高性能的分布式数据库系统。在实际应用中,应根据业务需求灵活选择合适的分片策略、读写分离策略和分布式治理方案,以确保系统的稳定性和可扩展性。

CSDN

博主分享

📥博主的人生感悟和目标

Java程序员廖志伟

📙经过多年在CSDN创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续出版。

面试备战资料

八股文备战
场景描述链接
时间充裕(25万字)Java知识点大全(高频面试题)Java知识点大全
时间紧急(15万字)Java高级开发高频面试题Java高级开发高频面试题

理论知识专题(图文并茂,字数过万)

技术栈链接
RocketMQRocketMQ详解
KafkaKafka详解
RabbitMQRabbitMQ详解
MongoDBMongoDB详解
ElasticSearchElasticSearch详解
ZookeeperZookeeper详解
RedisRedis详解
MySQLMySQL详解
JVMJVM详解

集群部署(图文并茂,字数过万)

技术栈部署架构链接
MySQL使用Docker-Compose部署MySQL一主二从半同步复制高可用MHA集群Docker-Compose部署教程
Redis三主三从集群(三种方式部署/18个节点的Redis Cluster模式)三种部署方式教程
RocketMQDLedger高可用集群(9节点)部署指南
Nacos+Nginx集群+负载均衡(9节点)Docker部署方案
Kubernetes容器编排安装最全安装教程

开源项目分享

项目名称链接地址
高并发红包雨项目https://gitee.com/java_wxid/red-packet-rain
微服务技术集成demo项目https://gitee.com/java_wxid/java_wxid

管理经验

【公司管理与研发流程优化】针对研发流程、需求管理、沟通协作、文档建设、绩效考核等问题的综合解决方案:https://download.csdn.net/download/java_wxid/91148718

希望各位读者朋友能够多多支持!

现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!

🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值