MMdetection3D 批量单目图像推理(3D目标检测),接上篇

接上篇单张推理,MMdetection3D 单目图像推理(3D目标检测)-CSDN博客

代码

import os
import mmcv
import mmengine
from mmdet3d.apis import init_model, inference_mono_3d_detector
from mmdet3d.visualization import Det3DLocalVisualizer


def main():

    # 1. 构建并导入模型
    config_file = 'configs\smoke\smoke_dla34_dlaneck_gn-all_4xb8-6x_kitti-mono3d.py'
    checkpoint_file = 'checkpoint\smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth'
    model = init_model(config_file, checkpoint_file, device='cuda:0')

    # 2. 设置图片路径和相机内参矩阵路径
    img_path = 'data/kitti/'
    ann_path = 'data/kitti/KITTI00-02.json '
    out_path = 'outputs/'

    # 3. 打印.pkl文件的内容
    # data_list = mmengine.load(ann_path)
    # print(data_list)

    # 4. 显示初始化
    visualizer = Det3DLocalVisualizer() 
    visualizer.dataser_meta = model.dataset_meta

    # 5. 批量推理并打印结果
    for filepath, dirnames, filenames in os.walk(img_path):
        for filename in filenames:
            img_p= os.path.join(filepath,filename)
            result = inference_mono_3d_detector(model, img_p, ann_path, 'CAM2')
            # print(result)

    # 6. 加载图像并修改数据格式
            img = mmcv.imread(img_p)
            img = mmcv.imconvert(img, 'bgr', 'rgb')

    # 7. 显示并保存推理结果
            out_file = os.path.join(out_path,filename)
            data_input = dict(img=img)
            visualizer.add_datasample(
                'result', 
                data_input, 
                data_sample=result, 
                draw_gt=False, 
                show=False,           # 批量时如果不需要看效果,尽量设置成False,否则每张图片都会显示一下
                wait_time=0, 
                out_file=out_file, 
                pred_score_thr=0.0, 
                vis_task='mono_det')

    # 8. 推理完成打印消息
            print(img_p + ' inference complete.')

if __name__ == '__main__':
    main()

批量和单张推理的不同有三个地方:

1. 增加了文件夹下的遍历和字符串拼接;

2. 重新设置了推理结果的保存路径;

3. 修改了inference_mono_3d_detector()函数中的部分内容。

由于inference_mono_3d_detector()函数在每次推理时都会检测图片路径是否相同(具体有啥用并不清楚),那么,直接注释掉就好了......(我自己的是源码,所以可以修改,二进制安装的话就不太清楚了)

找到inference_mono_3d_detector()函数,右键,转到定义,将如下部分注释掉,

img_path = data_info['images'][cam_type]['img_path']
if osp.basename(img_path) != osp.basename(img):
    raise ValueError(f'the info file of {img_path} is not provided.')

另外,显示并保存结果的部分需要将路径改成个人的,然后设置show=False,否则推理一张图像就会显示一下,很尴尬。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值