接上篇单张推理,MMdetection3D 单目图像推理(3D目标检测)-CSDN博客
代码
import os
import mmcv
import mmengine
from mmdet3d.apis import init_model, inference_mono_3d_detector
from mmdet3d.visualization import Det3DLocalVisualizer
def main():
# 1. 构建并导入模型
config_file = 'configs\smoke\smoke_dla34_dlaneck_gn-all_4xb8-6x_kitti-mono3d.py'
checkpoint_file = 'checkpoint\smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth'
model = init_model(config_file, checkpoint_file, device='cuda:0')
# 2. 设置图片路径和相机内参矩阵路径
img_path = 'data/kitti/'
ann_path = 'data/kitti/KITTI00-02.json '
out_path = 'outputs/'
# 3. 打印.pkl文件的内容
# data_list = mmengine.load(ann_path)
# print(data_list)
# 4. 显示初始化
visualizer = Det3DLocalVisualizer()
visualizer.dataser_meta = model.dataset_meta
# 5. 批量推理并打印结果
for filepath, dirnames, filenames in os.walk(img_path):
for filename in filenames:
img_p= os.path.join(filepath,filename)
result = inference_mono_3d_detector(model, img_p, ann_path, 'CAM2')
# print(result)
# 6. 加载图像并修改数据格式
img = mmcv.imread(img_p)
img = mmcv.imconvert(img, 'bgr', 'rgb')
# 7. 显示并保存推理结果
out_file = os.path.join(out_path,filename)
data_input = dict(img=img)
visualizer.add_datasample(
'result',
data_input,
data_sample=result,
draw_gt=False,
show=False, # 批量时如果不需要看效果,尽量设置成False,否则每张图片都会显示一下
wait_time=0,
out_file=out_file,
pred_score_thr=0.0,
vis_task='mono_det')
# 8. 推理完成打印消息
print(img_p + ' inference complete.')
if __name__ == '__main__':
main()
批量和单张推理的不同有三个地方:
1. 增加了文件夹下的遍历和字符串拼接;
2. 重新设置了推理结果的保存路径;
3. 修改了inference_mono_3d_detector()函数中的部分内容。
由于inference_mono_3d_detector()函数在每次推理时都会检测图片路径是否相同(具体有啥用并不清楚),那么,直接注释掉就好了......(我自己的是源码,所以可以修改,二进制安装的话就不太清楚了)
找到inference_mono_3d_detector()函数,右键,转到定义,将如下部分注释掉,
img_path = data_info['images'][cam_type]['img_path']
if osp.basename(img_path) != osp.basename(img):
raise ValueError(f'the info file of {img_path} is not provided.')
另外,显示并保存结果的部分需要将路径改成个人的,然后设置show=False,否则推理一张图像就会显示一下,很尴尬。