1136 A Delayed Palindrome (20 分)
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 with 0≤ai<10 for all i and ak>0. Then N is palindromic if and only if ai=ak−i for all i. Zero is written 0 and is also palindromic by definition.
Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )
Given any positive integer, you are supposed to find its paired palindromic number.
Input Specification:
Each input file contains one test case which gives a positive integer no more than 1000 digits.
Output Specification:
For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:
A + B = C
where A
is the original number, B
is the reversed A
, and C
is their sum. A
starts being the input number, and this process ends until C
becomes a palindromic number -- in this case we print in the last line C is a palindromic number.
; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations.
instead.
Sample Input 1:
97152
Sample Output 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
Sample Input 2:
196
Sample Output 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
主要是会写大整数加法就ok了
code
#pragma warning(disable:4996)
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
using namespace std;
string add(string a, string b);
bool ispalindromic(string s);
vector<int> varr;
int main() {
string s;
cin >> s;
int num = 0;
while (!ispalindromic(s)) {
num++;
string b = s;
reverse(b.begin(), b.end());
string c = add(s,b);
cout << s << " + " << b << " = " << c << endl;
s = c;
if (num == 10) break;
}
if (ispalindromic(s)) cout << s << " is a palindromic number." << endl;
else cout << "Not found in 10 iterations." << endl;
system("pause");
return 0;
}
bool ispalindromic(string s) {
for (int i = 0; i < s.size(); ++i) {
if (s[i] != s[s.size() - 1 - i]) return 0;
}
return 1;
}
string add(string a, string b) {
varr.clear();
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
int len = min(a.size(), b.size());
int i;
for (i = 0; i < len; ++i) {
varr.push_back(int(a[i] - '0') + b[i] - '0');
}
while (i < a.size()) varr.push_back(a[i++] - '0');
while (i < b.size()) varr.push_back(b[i++] - '0');
int cur = 0;
for (int i = 0; i < varr.size(); ++i) {
varr[i] += cur;
cur = varr[i] / 10;
varr[i] %= 10;
}
while (cur) {
varr.push_back(cur % 10);
cur /= 10;
}
string res;
for (int i = varr.size() - 1; i >= 0; --i) {
res += (varr[i] + '0');
}
return res;
}