稀疏矩阵是在实际应用中经常遇到的一种特殊矩阵类型,其中绝大部分元素都为零。由于稀疏矩阵的零元素占据了大量的存储空间,因此寻找一种省内存的存储方案非常重要。本文将介绍一种在Python中高效存储稀疏矩阵的方案,并提供相应的源代码。
在Python中,有多种方法可以存储稀疏矩阵,其中最常用的方法是使用压缩稀疏行(Compressed Sparse Row,CSR)格式。该格式通过存储非零元素的值、列索引和每行的起始位置来表示稀疏矩阵。这种存储方式在访问稀疏矩阵的每个元素时具有良好的性能,并且占用的存储空间较少。
下面是一个使用CSR格式存储稀疏矩阵的示例代码:
import numpy as np
from scipy.sparse import csr_matrix
# 创建稀疏矩阵
matrix = np.array