高效存储稀疏矩阵的Python方案

125 篇文章 ¥59.90 ¥99.00
本文介绍了在Python中高效存储稀疏矩阵的策略,包括压缩稀疏行(CSR)、压缩稀疏列(CSC)和坐标列表(COO)格式。这些格式能减少内存占用,提高访问性能。示例代码展示了如何转换和查看不同格式的稀疏矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

稀疏矩阵是在实际应用中经常遇到的一种特殊矩阵类型,其中绝大部分元素都为零。由于稀疏矩阵的零元素占据了大量的存储空间,因此寻找一种省内存的存储方案非常重要。本文将介绍一种在Python中高效存储稀疏矩阵的方案,并提供相应的源代码。

在Python中,有多种方法可以存储稀疏矩阵,其中最常用的方法是使用压缩稀疏行(Compressed Sparse Row,CSR)格式。该格式通过存储非零元素的值、列索引和每行的起始位置来表示稀疏矩阵。这种存储方式在访问稀疏矩阵的每个元素时具有良好的性能,并且占用的存储空间较少。

下面是一个使用CSR格式存储稀疏矩阵的示例代码:

import numpy as np
from scipy.sparse import csr_matrix

# 创建稀疏矩阵
matrix = np.array
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值