今天发布应用篇,按照笔者的总结给大家节省一点时间 脑图地址:http://github.com/PulsarPioneers/llm-learn/blob/main/assets/llm-learn-application.svg
一、应用平台概述
基于大模型的应用平台是连接用户需求与模型能力的桥梁,旨在通过集成化的开发环境和工具链支持快速构建AI应用。以下是主要的应用平台类型及其特点:
通用AI平台
- 代表:Grok(xAI)、Claude(Anthropic)、ChatGPT(OpenAI)
- 特点:提供对话、文本生成、多模态交互等通用功能,支持Web、移动端和API访问。
- 优势:易于上手,适合快速原型开发,覆盖广泛场景(如客服、内容创作)。
- 局限:通用性强但领域深度有限,需额外微调或集成以适配特定行业。
开发者工具平台
- 代表:Cursor、Windsurf、VS Code(集成AI插件)
- 特点:专注于编程辅助,支持代码补全、调试、文档生成,集成MCP等协议。
- 优势:提升开发效率,特别适合软件开发和数据科学场景。
- 局限:对非开发者用户吸引力有限,依赖外部工具生态。
企业级平台
- 代表:Apollo、Block、Sourcegraph 、Dify
- 特点:面向企业定制化需求,支持内部数据集成、知识库查询、自动化工作流。
- 优势:高安全性和合规性,适配复杂业务场景(如CRM、ERP)。
- 局限:部署成本高,需专业团队维护。
多模态平台
- 代表:Blender-MCP、Stable Diffusion集成平台
- 特点:支持文本、图像、语音等多模态输入输出,适合创意设计、游戏开发等。
- 优势:扩展了AI应用边界,增强用户交互体验。
- 局限:技术复杂度高,资源需求大。
二、大模型相关协议
协议是大模型与外部系统交互的关键,解决了传统API集成复杂性和碎片化的问题。以下是对MCP和A2A等协议的详细总结:
MCP(Model Context Protocol)
- 概述:由Anthropic于2024年11月推出,MCP是一个开源协议,旨在标准化大模型与外部数据源和工具的交互,类似“AI的USB-C”。
- 架构:
- MCP主机
:用户交互的AI应用(如Claude Desktop)。
- MCP客户端
:负责与服务器通信,翻译主机需求。
- MCP服务器
:提供工具、资源和提示模板(如GitHub、PostgreSQL)。
- 传输层
:支持STDIO(本地)和HTTP+SSE(远程),基于JSON-RPC 2.0。
- MCP主机
- 核心功能:
- 工具调用
:模型可执行API请求、数据库查询等。
- 资源访问
:统一访问文件、数据库等只读数据。
- 提示模板
:提供标准化的交互模板。
- 工具调用
- 优势:
-
解决“M×N”集成问题,降低开发复杂度(从M×N到M+N)。
-
支持动态工具发现和实时双向通信。
-
安全性高,通过隔离凭证和用户审批机制保护数据。
-
- 应用案例:
-
开发者工具:Windsurf通过MCP查询数据库,提升IDE智能性。
-
多模态:Blender-MCP支持通过提示生成3D场景。
-
企业集成:Block利用MCP连接内部系统,优化工作流。
-
- 挑战:
-
安全风险:本地服务器可能泄露凭证,需加强沙箱机制。
-
扩展性:多租户架构和远程服务器支持仍需完善。
-
学习曲线:开发者需熟悉协议规范。
-
A2A(Agent2Agent Protocol)
- 概述:由Google于2025年4月推出,A2A是一个开源协议,专注于多代理间的协作和通信,得到Salesforce、Accenture等50+科技公司的支持。
- 架构:
- 任务对象
:跟踪任务生命周期,包含请求详情。
- 工件(Artifacts)
:结构化任务输出,确保一致性。
- 传输层
:基于HTTP、SSE、JSON-RPC,支持推送通知。
- 任务对象
- 核心功能:
-
实现跨平台代理协作,即使代理不共享工具或上下文。
-
支持复杂多代理系统,适合企业级任务流水线。
-
提供状态上下文保存,增强长任务处理能力。
-
- 优势:
-
促进代理间自然、非结构化交互,类似人类协作。
-
简化多代理系统开发,降低集成成本。
-
开源生态强大,得到广泛行业支持。
-
- 应用案例:
-
企业自动化:代理协作完成招聘流程(如候选筛选、面试调度)。
-
开发工具:结合ADK(Agent Development Kit),快速构建协作代理。
-
- 挑战:
-
新兴协议,生态成熟度低于MCP。
-
复杂任务的协调机制需进一步优化。
-
与MCP的竞争可能导致开发者选择困惑。
-
其他相关协议
- ACP(Agent Connect Protocol):由AGNTCY推出,专注于多代理协作,类似A2A但更强调REST接口和状态上下文。适合不受控代理系统。
- OpenAPI/Function Calling:传统工具调用方式,MCP和A2A是对其的标准化升级,但仍广泛用于单一模型场景。
- LSP(Language Server Protocol):MCP的灵感来源,用于IDE语言支持,证明了标准化协议的可行性。
三、协议与平台的结合
MCP在平台中的应用:
- Cursor、Windsurf等开发者平台通过MCP集成数据库、GitHub等工具,提升代码生成和调试能力。
- 企业平台(如Block)利用MCP连接内部数据源,实现知识库查询和流程自动化。
- 多模态平台(如Blender-MCP)通过MCP实现AI驱动的3D建模和场景生成。
A2A在平台中的潜力:
- A2A适合多代理协作平台,如Teneo.ai的自动化系统,代理可分工完成复杂任务(如招聘、客服)。
- 与MCP结合使用:MCP为单个代理提供上下文,A2A实现代理间通信,形成完整的协作生态。
生态发展趋势:
- MCP已获得广泛采用,拥有250+社区服务器,覆盖GitHub、Slack、Google Drive等。
- A2A凭借Google支持和多公司协作,生态快速扩展,适合企业级多代理系统。
- 未来可能出现协议融合或统一标准,类似HTTP对Web的影响。
四、总结
基于大模型的应用平台通过通用AI、开发者工具、企业级和多模态平台,满足了多样化的用户需求。MCP和A2A作为新兴协议,分别解决了模型与工具集成(MCP)和代理间协作(A2A)的痛点,显著降低了开发复杂性并推动了AI应用的互联互通。MCP以其标准化和广泛生态在开发者工具和企业集成中占据优势,而A2A凭借多代理协作能力在企业自动化领域展现潜力。
未来,平台与协议的深度结合将进一步打破数据孤岛,构建更智能、协作的AI生态,开发者需关注协议的演进和生态扩展以保持竞争力。 如有错误欢迎大家指正~~~ 🚀🚀🚀
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓