清华AdaptThink原理解析及应用场景

在这里插入图片描述
NoThinking(又称AdaptThink)是由清华大学KEG实验室于2025年提出的自适应推理框架,其核心目标是动态平衡模型推理深度与效率,通过强化学习技术让大语言模型(LLM)自主选择是否启用显式思考过程。以下从技术原理、性能优势及应用场景三方面展开分析:


⚙️ 一、技术原理:动态决策的强化学习机制

1. 问题定义:思考模式的效率困境
  • Thinking模式:传统LLM对每个问题均生成详细推理链(如“首先…其次…”),虽提升复杂任务准确率,但显著增加计算开销(token量↑3-4倍)。
  • NoThinking模式:通过预填充空思考标记(如<think>已思考完毕</think>)强制跳过推理步骤,直接输出答案,效率高但复杂任务表现下降。
  • 关键发现:简单问题(如AMC数学题)中,NoThinking准确率可达51.3%,反超Thinking的28.9%(token预算700时)。
2. 框架设计:双组件协同优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值