NoThinking(又称AdaptThink)是由清华大学KEG实验室于2025年提出的自适应推理框架,其核心目标是动态平衡模型推理深度与效率,通过强化学习技术让大语言模型(LLM)自主选择是否启用显式思考过程。以下从技术原理、性能优势及应用场景三方面展开分析:
⚙️ 一、技术原理:动态决策的强化学习机制
1. 问题定义:思考模式的效率困境
- Thinking模式:传统LLM对每个问题均生成详细推理链(如“首先…其次…”),虽提升复杂任务准确率,但显著增加计算开销(token量↑3-4倍)。
- NoThinking模式:通过预填充空思考标记(如
<think>已思考完毕</think>
)强制跳过推理步骤,直接输出答案,效率高但复杂任务表现下降。 - 关键发现:简单问题(如AMC数学题)中,NoThinking准确率可达51.3%,反超Thinking的28.9%(token预算700时)。