histogram equalization examples

本文介绍了一种通过直方图均衡化来增强图像对比度的方法。该方法利用累积分布函数(CDF),确保灰度级均匀分布,从而在不改变图像原始内容的基础上提高图像对比度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

reference: 点击打开链接 https://blog.csdn.net/xiajun07061225/article/details/6910129

example:

original image:



after histogram:


we can see that the contrast of the latter image is higher than that of the original image.


important principles:

1. we need to guarantee that during this process, the transformation T is monotonically increasing.

2. we use the cumulative distribution function(cdf) to make the the gray-level have a uniform distribution to satisfy the first requiement.

### License Plate Recognition Using MATLAB For implementing license plate recognition (LPR) using MATLAB, the process involves several key stages including image acquisition, preprocessing, character segmentation, and finally, character recognition. In complex environments, deep learning algorithms have shown significant improvements over traditional methods due to their ability to handle variations in lighting, angles, and occlusions[^1]. #### Image Acquisition The first step is acquiring images of vehicles from which license plates need to be recognized. This can involve capturing live video streams or processing pre-recorded footage. ```matlab % Example code snippet for reading an input image file into MATLAB. img = imread('car_image.jpg'); imshow(img); title('Original Car Image'); ``` #### Preprocessing Preprocessing enhances features that are important for subsequent steps while reducing noise. Techniques such as grayscale conversion, histogram equalization, edge detection, binarization, etc., may apply depending upon specific requirements. ```matlab grayImg = rgb2gray(img); % Convert color image to gray scale bwImg = imbinarize(grayImg,'global'); % Perform binary thresholding operation figure; imshow(bwImg), title('Binary Image After Thresholding') ``` #### Character Segmentation This stage aims at isolating individual characters within detected regions corresponding to potential license plates. Methods like contour finding combined with morphological operations prove effective here. ```matlab cc = bwconncomp(bwImg); stats = regionprops(cc,'BoundingBox','Image'); plates = []; for i=1:length(stats) bbox = stats(i).BoundingBox; croppedPlate = imcrop(bwImg,bbox); plates{end+1} = croppedPlate; end ``` #### Character Recognition Finally, each segmented character undergoes classification through machine learning models trained specifically for this task. With advancements in neural networks, convolutional layers offer superior performance compared to classical approaches when dealing with real-world scenarios characterized by high variability. Incorporating these components together forms a complete LPR system capable of functioning effectively even under challenging conditions described earlier. For more detailed guidance tailored towards building custom solutions based on personal datasets, exploring official documentation provided alongside toolboxes dedicated to computer vision tasks would serve beneficially. --related questions-- 1. What are some common challenges faced during implementation of LPR systems? 2. How does one prepare training data suitable for teaching classifiers about different types of fonts used across various countries' license plates? 3. Can you provide examples where traditional techniques outperform modern DL-based ones regarding speed vs accuracy trade-offs? 4. Are there any particular considerations required before deploying LPR applications outdoors versus indoors settings?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值