星图易码SCADA助力某大型燃气集团实现智能化生产调度升级

项目背景

某大型燃气集团负责多个城市的天然气输配业务,旗下拥有数十座门站及上千公里燃气管网。随着业务规模扩大,传统人工调度模式面临严峻挑战:场站分散导致数据采集滞后、应急响应效率低、缺乏统一监控平台,难以满足安全高效运营需求。集团亟需一套智能化SCADA生产调度系统,实现全域数据实时监控与科学决策。

核心痛点

数据孤岛严重:各场站独立运行,数据无法实时汇总,调度中心难以掌握全局状态。

应急响应滞后:管网压力、泄漏等异常报警依赖人工巡检,故障处理效率低。

管理效率低下:生产报表依赖手工统计,历史数据分析能力不足,难以优化调度策略。

安全风险高:缺乏工业级网络隔离措施,控制系统面临外部攻击威胁。

解决方案

基于客户需求,星图易码为其定制了燃气SCADA生产调度系统,以“分布式实时数据库”为核心,构建“监测-分析-决策-控制”一体化平台,覆盖调度中心、有人/无人值守门站及工业监测点。

星图易码DevMate.SCADA

图片

01系统架构设计

拓扑结构

采用“调度中心-区域站-终端设备”三级架构,支持万点级数据并发处理。

核心组件

SCADA平台:实现全域数据采集、动态流程图展示及远程控制。

企业级实时数据库:支持30万条/秒高速存储,压缩比达40:1,满足海量历史数据追溯与分析。

智能报警管理系统:支持ISA 18.2标准,实现多级报警推送(声光、短信、邮件),响应速度提升80%。

安全隔离网关:通过硬件级物理隔离与白名单机制,保障工控网络安全。

02功能亮点

全域可视化监控:集成GIS地图与动态工艺流程图,实时展示压力、温度、流量等关键参数,支持Web端多终端访问。

智能调度决策:基于实时数据与历史趋势分析,自动生成输配计划与泄漏定位策略,调度指令下发效率提升60%。

多维度报表体系:自动生成班报、日报、能效分析报表,并与ERP系统无缝对接,助力管理层精准决策。

冗余容灾设计:双服务器热备+云端灾备,系统可用性达99.99%。

实施效果

效率提升:调度中心数据响应时间从分钟级缩短至秒级,异常事件处置效率提高70%。

安全增强:通过安全网关与权限分级管理,实现零外部攻击渗透,工控网络可靠性达行业领先水平。

成本优化:能源损耗降低15%,年节约运维成本超千万元。

管理升级:形成“集中监控-智能分析-科学决策”闭环,为智慧燃气建设奠定数据基础。

客户评价

“星图易码的SCADA系统不仅解决了数据孤岛问题,更通过智能分析功能显著提升了我们的调度效率。系统稳定性和安全性完全超出预期,为集团数字化转型提供了坚实支撑。”

关于星图易码

星图易码是中科星图股份有限公司(股票代码:688568)旗下以低代码相关产品为核心的数字化产品及在线业务服务公司。依托母公司的技术支持和行业经验,星图易码将空天大数据技术与工业场景深度融合,基于自主研发的GEOVIS DevMate星图云开发者平台,构建空天数据+物联中台+数字地球引擎+数字孪生引擎+低代码编辑器+算法+SaaS工具一体的在线低代码开发底座,致力于面向空天信息、制造业、能源化工等提供数智化产品、定制开发服务及行业解决方案,推动传统产业智能化升级。

内容概要:本文详细介绍了Maven的下载、安装与配置方法。Maven是基于项目对象模型(POM)的概念,用于项目管理和构建自动化的工具,能有效管理项目依赖、规范项目结构并提供标准化的构建流程。文章首先简述了Maven的功能特点及其重要性,接着列出了系统要求,包括操作系统、磁盘空间等。随后,分别针对Windows、macOS和Linux系统的用户提供了详细的下载和安装指导,涵盖了解压安装包、配置环境变量的具体操作。此外,还讲解了如何配置本地仓库和镜像源(如阿里云),以优化依赖项的下载速度。最后,给出了常见的错误解决方案,如环境变量配置错误、JDK版本不兼容等问题的处理方法。 适合人群:适用于初学者以及有一定经验的Java开发人员,特别是那些希望提升项目构建和依赖管理效率的技术人员。 使用场景及目标: ①帮助开发者掌握Maven的基本概念和功能特性; ②指导用户完成Maven在不同操作系统上的安装与配置; ③教会用户如何配置本地仓库和镜像源以加快依赖项下载; ④解决常见的安装和配置过程中遇到的问题。 阅读建议:由于Maven的安装和配置涉及多个步骤,建议读者按照文中提供的顺序逐步操作,并仔细检查每个环节的细节,尤其是环境变量的配置。同时,在遇到问题时,可参考文末提供的常见问题解决方案,确保顺利完成整个配置过程。
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 旅行商问题(Traveling Salesman Problem, TSP)是一种经典的组合优化问题,目标是找到一条最短路径,让推销员访问一系列城市后返回起点,且每个城市只访问一次。该问题可以转化为图论问题,其中城市是节点,城市间的距离是边的权重。遗传算法是一种适合解决TSP这类NP难问题的全局优化方法,其核心是模拟生物进化过程,包括初始化、选择、交叉和变异等步骤。 初始化:生成初始种群,每个个体(染色体)表示一种旅行路径,通常用随机序列表示,如1到18的整数序列。 适应度计算:适应度函数用于衡量染色体的优劣,即路径总距离。总距离越小,适应度越高。 选择过程:采用轮盘赌选择机制,根据适应度以一定概率选择个体进入下一代,适应度高的个体被选中的概率更大。 交叉操作:一般采用单点交叉,随机选择交叉点,交换两个父代个体的部分基因段生成子代。 变异操作:采用均匀多点变异,随机选择多个点进行变异,变异点的新值在预设范围内随机生成,以维持种群多样性。 反Grefenstette编:为确保解的可行性,需将变异后的Grefenstette编转换回原始城市序列,即对交叉和变异结果进行反向处理。 迭代优化:重复上述步骤,直至满足终止条件,如达到预设代数或适应度阈值。 MATLAB是一种强大的数值和科学计算工具,非常适合实现遗传算法。通过编写源程序,可以构建遗传算法框架,处理TSP问题的细节,包括数据结构定义、算法流程控制以及适应度计算、选择、交叉和变异操作的实现。遗传算法虽不能保证找到最优解,但在小规模TSP问题中能提供不错的近似解。对于大规模TSP问题,可结合局部搜索、多算法融合等策略提升解的质量。在实际应用中,遗传算法常与其他优化方法结合,用于解决复杂的调度和路径规划问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值