将PU(帕德博恩)数据集处理为CSV并绘制时频图

为方便deeplearner,将PU数据集(.mat)处理为csv格式并绘制时频图以观察数据特征。

官网下载的PU数据集为.mat格式,python机器学习常用.csv,因此对其进行处理:

使用matlab打开数据查看文件存储格式。

对所有工况振动数据进行处理转换:

使用matplotlib绘制时频图:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.size'] = '16'  # Fig
### 关于博恩数据集的详细介绍 博恩数据集是一个广泛应用于机械故障诊断领域的公开数据集,由博恩大学发布。它提供了丰富的振动信号和电机电流信号数据,适用于研究基于数据驱动的故障识别和分类方法[^3]。 #### 数据集的内容概述 该数据集主要涉及轴承运行过程中产生的多源数据,具体包括但不限于以下几个方面: - **振动数据**:记录了轴承在不同工况下的振动特性。 - **电机电流数据**:反映了电动机的工作状态及其变化趋势。 - **温度数据**:监测设备运行过程中的热效应。 - **机械参数**:如负载(force)、转速(speed)、扭矩(torque),这些参数能够反映机械设备的实际工作条件[^2]。 #### 数据集的特点 博恩数据集的一个显著特点是其涵盖了多种类型的轴承损伤状况,既有人工制造的特定缺陷也有自然老化的结果。这种多样性使得研究人员可以构建更加鲁棒的机器学习模型来应对实际工业场景中的复杂挑战。 #### 如何获取博恩数据集? 可以通过以下链接访问下载完整的数据集合相关文档: - 官方资源文件地址: [https://gitcode.com/Open-source-documentation-tutorial/ab5ab](https://gitcode.com/Open-source-documentation-tutorial/ab5ab)[^1] - 博恩大学官方解读分享: [https://gitcode.com/Resource-Bundle-Collection/a16aa](https://gitcode.com/Resource-Bundle-Collection/a16aa)[^3] #### 使用指导 为了便于理解和利用此数据集,“博恩数据集详细解读(一看就懂)”这份辅助材料被特别设计出来。其中不仅有清晰的数据说明还有实例演示如何处理和分析这些宝贵的信息[^1]。 以下是简单的MATLAB代码示例用于加载部分数据进行初步探索: ```matlab % 加载Y结构体内的振动数据 load('your_data_file.mat'); % 替换为实际路径名 vibrationData = Y.vibration; % 显示基本信息 disp(['Vibration Data Size:', num2str(size(vibrationData))]); % 绘制前几秒的时间序列图 figure; plot(vibrationData(1:fs*5)); % fs代表采样率, 可能需要预先定义或者查阅元数据获得 title('Sample Vibration Signal'); xlabel('Time Samples'); ylabel('Amplitude'); ``` 上述脚本展示了怎样读取存储在`.mat`格式里的振动数组,绘制一小段时间窗口内的波形曲线以便观察原始信号形态。 ### 结论 综上所述,博恩数据集不仅是学术界开展机械健康监控研究的理想素材之一,在工程实践中同样具有很高的应用价值。通过合理运用所提供的各类测量指标以及配套的学习工具和技术手册,可以帮助我们更好地完成从理论验证到实践部署整个流程的任务目标。 相关问题
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值