Linux上部署含有第三方库的python脚本(anaconda3,TensorFlow2.0)

一、安装所需软件

1.1 Anaconda

链接: link
在这里插入图片描述
进入到指定目录

sh Anaconda3-2020.11-Linux-x86_64.sh

按照指示输入enter或者yes
在这里插入图片描述
添加环境变量vi /etc/profile
在这里插入图片描述
在这里插入图片描述
conda list如果能使用则安装成功

1.2 Tensorflow2

配置jupyter环境

[root@localhost ~]#   source /root/.bashrc

配置jupyter notebook

[root@localhost ~]#    cd /root/anaconda3/etc/jupyter
(base) [root@localhost jupyter]#   jupyter notebook --generate-config

设置jupyter notebook的登录密码

(base) [root@izwz9inovbad1itlt8v4taz ~]# cd /root/anaconda3/etc/jupyter
(base) [root@izwz9inovbad1itlt8v4taz jupyter]# jupyter notebook --generate-config
Writing default config to: /root/.jupyter/jupyter_notebook_config.py
(base) [root@izwz9inovbad1itlt8v4taz jupyter]# python
Python 3.8.5 (default, Sep  4 2020, 07:30:14) 
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from notebook.auth import passwd
>>> passwd()
Enter password: 
Verify password: 
'argon2:$argon2id$v=19$m=10240,t=10,p=8$okO0TZ2FHS7ZXWPXix/XXg$4Gga3sdhjE1si+bbXB9utQ'

修改jupyter notebook的文件设置

(base) [root@localhost data]#  cd /root/.jupyter/
(base) [root@localhost .jupyter]#  ls
(base) [root@localhost .jupyter]# vim jupyter_notebook_config.py 
c.NotebookApp.ip = 'ip'  # 允许访问此服务器的 IP,星号表示任意 IP
c.NotebookApp.password = u'sha1:fc48ba43d994:264211bcd15748509d8711bfede4ae330d208641' # 之前生成的密码字串
c.NotebookApp.open_browser = False # 运行时不打开本机浏览器
c.NotebookApp.port = 8888 # 使用的端口
c.NotebookApp.enable_mathjax = True # 启用 MathJax
c.NotebookApp.notebook_dir = '/root/jupyter'      # 存放文件的目录
c.NotebookApp.allow_remote_access = True     # 允许远程访问

启动 jupyter notebook

jupyter notebook --ip=0.0.0.0 --allow-root

安装

pip install keras tensorflow==2.3.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/ --default-timeout=100 --use-feature=2020-resolver

在这里插入图片描述
把对应的脚本放到jupyter上看是否能够运行,通常如果文件路径设置正确的话,执行就已经成功了

### 不使用 Anaconda 配置 TensorFlow 2.0 如果不想通过 Anaconda 来安装和配置 TensorFlow 2.0,可以采用基于原生 Python 和 `pip` 的方式来实现。以下是详细的说明: #### 使用 Pip 安装 TensorFlow 2.0 确保已安装最新版本的 Python(建议使用 Python 3.7 或更高版本)。可以通过以下命令验证当前系统的 Python 版本: ```bash python --version ``` 接着更新 `pip` 到最新版本以避免兼容性问题: ```bash pip install --upgrade pip ``` 随后可以直接运行以下命令安装 TensorFlow 2.0[^4]: ```bash pip install tensorflow==2.0.0 ``` 对于 GPU 支持的情况,则需额外注意 CUDA 和 cuDNN 的依赖关系。具体来说,在安装之前需要确认本地已经正确安装了 NVIDIA 显卡驱动程序以及对应的 CUDA 工具包和 cuDNN 库。 #### 配置 GPU 支持 (可选) 为了使 TensorFlow 能够利用 GPU 加速计算能力,还需要满足如下条件并完成相应设置: 1. **NVIDIA 显卡**: 系统上应配备支持 CUDA 计算功能的 NVIDIA 图形处理器。 2. **CUDA Toolkit**: 下载TensorFlow 兼容版本匹配的 CUDA 开发工具集。例如, 对于 TensorFlow 2.0.0 推荐使用的 CUDA 版本为 10.0[^5]。 3. **cuDNN SDK**: 同样要下载对应版本的 cuDNN 文件,并将其解压至适当位置以便被操作系统识别到路径中去[^6]。 当上述准备工作完成后就可以执行下面这条指令来进行带 GPU 功能的支持版 Tensorflow部署工作: ```bash pip install tensorflow-gpu==2.0.0 ``` 最后一步就是测试一下整个流程是否成功生效了。可以在交互式的解释器里输入简单的代码片段来看效果如何: ```python import tensorflow as tf print(tf.__version__) tf.config.list_physical_devices('GPU') ``` 这段脚本会打印出当前加载的 TF 模块的具体编号信息同时也尝试列举所有可用作运算加速用途物理级联设备列表中的成员项们出来供查看之便[^7]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值