sklearn实战:使用knn进行回归拟合

本文详细介绍了如何利用sklearn库中的KNN算法进行回归拟合。通过实例展示了数据预处理、模型训练、预测及效果评估的完整流程,帮助读者掌握KNN在回归问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
# 生成训练样本
n_dots = 40
X = 5 * np.random.rand(n_dots, 1)

y = np.cos(X).ravel()

# 添加一些噪声
y += 0.2 * np.random.rand(n_dots) - 0.1
# 训练模型
from sklearn.neighbors import KNeighborsRegressor
k = 5
knn = KNeighborsRegress
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值