基于Pytorch深度学习——从深度学习角度详解2024年诺贝尔化学奖AlphaFold2

AlphaFold2是由DeepMind开发的一种深度学习模型,旨在解决蛋白质折叠问题。蛋白质的三维结构对于理解其功能至关重要,而传统的实验方法(如X射线晶体学或核磁共振)既耗时又昂贵。AlphaFold2通过使用先进的神经网络架构,能基于氨基酸序列预测蛋白质的三维结构。同时,该模型也是2024年诺贝尔化学奖模型,十分值得我们学习。
本博客参考李沐老师对AlphaFold2的理解,视频链接如:李沐老师AlphaFold2

前置知识

相信大部分的同学都和我一样,都不是从事化学行业的,所以在读这一篇论文之前,需要一定的前置知识。

如何观察蛋白质的结构

X射线晶体学 (X-ray Crystallography)

原理:通过将蛋白质结晶化,然后用X射线照射这些晶体,测量散射光的衍射图案。根据衍射图案,可以推算出蛋白质的三维结构。
优点:这种方法提供了非常精确的结构信息,尤其适用于大多数蛋白质。
缺点:蛋白质必须首先结晶化,这对于某些蛋白质(尤其是大分子或者膜蛋白)来说非常困难和耗时。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值