AlphaFold2是由DeepMind开发的一种深度学习模型,旨在解决蛋白质折叠问题。蛋白质的三维结构对于理解其功能至关重要,而传统的实验方法(如X射线晶体学或核磁共振)既耗时又昂贵。AlphaFold2通过使用先进的神经网络架构,能基于氨基酸序列预测蛋白质的三维结构。同时,该模型也是2024年诺贝尔化学奖模型,十分值得我们学习。
本博客参考李沐老师对AlphaFold2的理解,视频链接如:李沐老师AlphaFold2
前置知识
相信大部分的同学都和我一样,都不是从事化学行业的,所以在读这一篇论文之前,需要一定的前置知识。
如何观察蛋白质的结构
X射线晶体学 (X-ray Crystallography)
原理:通过将蛋白质结晶化,然后用X射线照射这些晶体,测量散射光的衍射图案。根据衍射图案,可以推算出蛋白质的三维结构。
优点:这种方法提供了非常精确的结构信息,尤其适用于大多数蛋白质。
缺点:蛋白质必须首先结晶化,这对于某些蛋白质(尤其是大分子或者膜蛋白)来说非常困难和耗时。