PTA:哈夫曼编码

该博客介绍了一道关于哈夫曼编码的问题,要求判断给定的编码集是否符合哈夫曼编码的标准,即无前缀冲突且能实现最优压缩。博客提供了样例输入和输出,并详细解释了解决思路,包括构建哈夫曼树、计算带权路径长度以及如何判断前缀冲突。博主分享了判断函数的两个关键部分,并提醒注意在处理多组数据时保持程序逻辑清晰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7-6 哈夫曼编码 (30 分)

给定一段文字,如果我们统计出字母出现的频率,是可以根据哈夫曼算法给出一套编码,使得用此编码压缩原文可以得到最短的编码总长。然而哈夫曼编码并不是唯一的。例如对字符串"aaaxuaxz",容易得到字母 ‘a’、‘x’、‘u’、‘z’ 的出现频率对应为 4、2、1、1。我们可以设计编码 {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111},也可以用另一套 {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000},还可以用 {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101},三套编码都可以把原文压缩到 14 个字节。但是 {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} 就不是哈夫曼编码,因为用这套编码压缩得到 00001011001001 后,解码的结果不唯一,“aaaxuaxz” 和 “aazuaxax” 都可以对应解码的结果。本题就请你判断任一套编码是否哈夫曼编码。

输入格式:
首先第一行给出一个正整数 N(2≤N≤63),随后第二行给出 N 个不重复的字符及其出现频率,格式如下:

c[1] f[1] c[2] f[2] … c[N] f[N]
其中c[i]是集合{‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}中的字符;f[i]是c[i]的出现频率,为不超过 1000 的整数。再下一行给出一个正整数 M(≤1000),随后是 M 套待检的编码。每套编码占 N 行,格式为:

c[i] code[i]
其中c[i]是第i个字符;code[i]是不超过63个’0’和’1’的非空字符串。

输出格式:
对每套待检编码,如果是正确的哈夫曼编码,就在一行中输出"Yes",否则输出"No"。

注意:最优编码并不一定通过哈夫曼算法得到。任何能压缩到最优长度的前缀编码都应被判为正确。

输入样例:
7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
输出样例:
Yes
Yes
No
No

说明:我用的编译器是codblocks,可能有些地方其他编译器不太支持,下次会多加注意

思路:
首先利用数组法创建出一棵哈夫曼树(即每次寻找最小的两个根结点,并进行n-1次合并)
创建树的结构体类型

struct HTnode{
   
    char data;
    int weight;
    int lchild,rchild,parent;
    int way_length;
};

具体初始化以及合并过程

HTnode H_Tree[1000];
    int n;
    cin>>n;
    for(int i = 0 ; i < n; i ++){
   
        cin>>H_Tree[i].data;
        cin>>H_Tree[i].weight;
        H_Tree[i].parent=-1;
        H_Tree[i].lchild=-1;
        H_Tree[i].rchild=-1;
    }
    int i;//for iter
    for( i = 0 ; i < n-1 ; i ++){
   
            int j;
            for (j=0;j<n+i;j++){
   
                if(H_Tree[j].parent==-1)
                    break;
            }
            int min1=j;
            for (int k=0;k<n+i;k++){
   
                if(H_Tree[min1].weight>H_Tree[k].weight&&H_Tree[k].parent==-1)
                    min1=k;
            }
            H_Tree[min1].parent=n+i;
            for (j=0;j<n+i;j++){
   
                if(H_Tree[j].parent==-1)
                    break;
            }
            int min2=j;
            for (int k=0;k<n+i;k++){
   
                if(H_Tree[min2].weight>H_Tree[k].weight&&H_Tree[k].parent==-1)
                    min2=k;
            }
            H_Tree[min2
### 哈夫曼树与哈夫曼编码的原理及实现方法 #### 1. 哈夫曼树的概念 哈夫曼树(Huffman Tree),也称为最优二叉树,是一种带权路径长度最短的二叉树[^3]。它的构造基于一组给定的权重值,通常这些权重代表字符出现的频率或概率。通过构造哈夫曼树,可以为每个字符分配一个唯一的二进制编码,使得常见字符的编码较短,而稀有字符的编码较长。 #### 2. 哈夫曼编码的原理 哈夫曼编码是一种用于数据压缩的前缀编码方法。它利用哈夫曼树的结构生成编码,确保任何字符的编码都不是另一个字符编码的前缀,从而避免解码时的歧义[^3]。编码规则如下: - 左分支标记为“0”。 - 右分支标记为“1”。 #### 3. 算法实现步骤 以下是哈夫曼树和哈夫曼编码的算法实现方法: ```python import heapq from collections import defaultdict class Node: def __init__(self, char, freq): self.char = char self.freq = freq self.left = None self.right = None # 定义比较规则以支持堆排序 def __lt__(self, other): return self.freq < other.freq def build_huffman_tree(frequencies): priority_queue = [Node(char, freq) for char, freq in frequencies.items()] heapq.heapify(priority_queue) while len(priority_queue) > 1: left = heapq.heappop(priority_queue) right = heapq.heappop(priority_queue) merged = Node(None, left.freq + right.freq) merged.left = left merged.right = right heapq.heappush(priority_queue, merged) return priority_queue[0] def generate_huffman_codes(root, current_code, huffman_codes): if root is None: return if root.char is not None: huffman_codes[root.char] = current_code return generate_huffman_codes(root.left, current_code + "0", huffman_codes) generate_huffman_codes(root.right, current_code + "1", huffman_codes) def huffman_encoding(frequencies): root = build_huffman_tree(frequencies) huffman_codes = {} generate_huffman_codes(root, "", huffman_codes) return huffman_codes # 示例输入 frequencies = {'a': 45, 'b': 13, 'c': 12, 'd': 16, 'e': 9, 'f': 5} # 构造哈夫曼编码 huffman_codes = huffman_encoding(frequencies) print("Huffman Codes:") for char, code in huffman_codes.items(): print(f"{char}: {code}") ``` #### 4. 时间复杂度分析 构建哈夫曼树的过程涉及多次从优先队列中提取最小元素的操作。假设共有 \( n \) 个字符,则每次提取操作的时间复杂度为 \( O(\log n) \),总共需要执行 \( n-1 \) 次合并操作。因此,构建哈夫曼树的时间复杂度为 \( O(n \log n) \)[^2]。 生成哈夫曼编码的过程是对哈夫曼树进行深度优先遍历(DFS)。由于每个结点仅被访问一次,因此时间复杂度为 \( O(n) \)[^2]。 ###
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值