AI 工程师 35 岁危机调查:你的 Plan B,准备好了吗?

在科技飞速发展的当下,AI 领域曾被视为一片充满无限机遇的乐土。高薪、前沿技术、广阔前景,吸引着无数怀揣梦想的年轻人投身其中。然而,当 35 岁这道职业门槛悄然横亘在面前时,许多 AI 工程师却惊觉,危机正步步逼近。

在这里插入图片描述

一、危机现状:残酷现实摆在眼前

从招聘市场的反馈来看,AI 工程师的年龄歧视现象愈发明显。在深圳的一场 AI 人才专场招聘会上,70% 的 AI 训练师岗位要求年龄在 30 岁以下,“熟练使用抖音 / 小红书” 成为高频任职要求,甚至有 AI 公司 HR 当场退回 35 岁求职者简历,直言 “我们需要的是能熬夜跑模型的 00 后训练师”。

某招聘平台数据显示,2025 年 AI 训练师岗位平均年龄已从 28.3 岁降至 24.7 岁,而传统程序员转型 AI 的成功率不足 15%。头部企业技术总监更是直言 “35 岁程序员连 Stable Diffusion 的插件生态都玩不转”。这意味着,在 AI 领域,尤其是一些新兴的细分岗位,35 岁的工程师们正面临着前所未有的求职困境,他们的经验似乎不再是优势,反而成了被市场挑挑拣拣的 “劣势”。

再看企业内部,裁员、转岗的压力也让 35 岁以上的 AI 工程师如履薄冰。技术迭代加速,许多曾经热门的技术和模型在短时间内就被新的架构和算法取代。27 岁的算法工程师小林,眼睁睁看着自己维护的模型被 Meta 新架构淘汰,打开招聘软件,年龄筛选栏 “25-30 岁” 像一道难以跨越的鸿沟。而在一些企业的内部调整中,35 岁以上的 AI 工程师成为了被优化的重点对象,被迫离开自己深耕多年的岗位。

二、危机根源:多方面因素交织

  1. 技术迭代的飞速步伐是首要原因。在 AI 领域,新的算法、框架和模型层出不穷,Transformer 架构寿命仅 18 个月,技术的快速更新换代要求工程师们必须时刻保持学习的状态,不断更新自己的知识体系。然而,随着年龄的增长,学习能力和精力逐渐下降,35 岁以上的工程师在与年轻一代的竞争中,往往难以跟上这一节奏。他们可能还在熟悉旧技术的深度应用,新技术已经呼啸而来,让他们措手不及。

  2. 行业对人力成本和效率的极致追求也加剧了这一危机。从人力成本来看,00 后训练师时薪 45 元,仅为资深工程师的 1/4,企业出于成本控制的考虑,更倾向于招聘年轻且 “性价比高” 的员工。在效率方面,年轻人用 200 次 / 天的模型迭代速度,创造 10 倍于传统方法的创新概率,并且在连续 72 小时监控模型训练等高强度工作中,00 后熬夜能力是 35 岁程序员的 3 倍。字节跳动、美团等企业已将 AI 训练团队划归市场部,技术背景反而成为转型障碍,资本效率的选择让 35 岁以上的 AI 工程师在这场年龄战争中逐渐处于劣势。

  3. 此外,AI 行业发展初期的人才结构问题也开始显现。早期大量涌入的 AI 从业者,随着时间推移年龄增长,但职业发展路径却相对单一。多数人局限于技术岗位,缺乏管理经验或跨行业能力,当面临职业瓶颈时,转型变得异常艰难。脱离业务的纯算法经验,在市场变化时,连外包公司都嫌弃,导致他们在企业内部调整或外部求职时,可选择的空间极为有限。

三、Plan B 应对策略:积极转型求突破

(一)转型技术专家 / 架构师

深耕某一领域,如云原生、AI、区块链等,考取高级认证,如 AWS/Azure/GCP 架构师、DevOps 专家等。利用现有的技术经验进行升级,从单纯的技术执行者转变为技术规划者和架构搭建者。例如,某 Java 后端程序员通过自学 Python 和 TensorFlow,考取 AWS 机器学习认证,成功转型为 AI 领域的机器学习工程师,在新的岗位上发挥自己的技术专长,实现了职业的进阶。

(二)转向 AI 产品经理

结合自身的技术背景和行业经验,转型为 AI 产品经理。从关注技术实现转向关注产品规划和设计,将技术与市场需求相结合。35 岁以上的 AI 工程师在行业内积累了丰富的项目经验,对技术的理解更为深刻,能够更好地把握产品的技术可行性和创新性,在产品经理岗位上发挥独特优势,负责规划和设计出更贴合市场需求的人工智能产品。

(三)成为行业应用专家

充分发挥自身的行业背景优势,如金融、医疗、制造等,转型为人工智能在特定行业的应用专家,开发垂直领域解决方案。能把 AI 技术和行业 know - how 结合的人,往往能得到企业的高度重视。一位 45 岁的产品经理,去年开始学大模型应用,现在帮传统企业搞数字化转型,项目接到手软。在 AI + 医疗、AI + 教育、AI + 制造等领域,将 AI 技术落地应用,解决行业实际问题,成为企业急需的稀缺人才。

(四)自主创业或开展副业

如果有足够的技术实力和市场洞察力,也可以考虑自主创业或开展副业。利用自身在 AI 领域的技术优势,开发一些小型的 AI 应用或提供相关技术服务。比如,开发针对特定行业的 AI 工具,为企业提供定制化的 AI 解决方案等。通过自主创业或副业,不仅可以增加收入来源,还能在更自由的环境中发挥自己的技术能力,实现个人价值。

(五)提升软技能,拓展职业路径

除了技术能力,还应注重提升沟通能力、团队协作能力、项目管理能力等软技能。这些技能在职业发展中同样重要,能够帮助工程师更好地与团队成员、上级领导以及其他部门进行沟通协作,从而拓展职业路径。例如,具备良好沟通和项目管理能力的 AI 工程师,可以转型为技术项目经理,负责带领团队完成复杂的 AI 项目,实现从技术岗位到管理岗位的转变。

四、总结

35 岁对于 AI 工程师来说,并非是职业的终点,而是一个需要重新审视自身发展、积极寻求转型突破的关键节点。通过制定合理的 Plan B,不断学习和提升自己,他们依然能够在 AI 领域这片广阔天地中找到属于自己的新机遇,书写职业发展的新篇章。

五、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值