SEAM关键代码解析

博客对Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation的关键代码进行了解析,涉及弱监督语义分割相关内容,与深度学习、人工智能领域紧密相关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation 关键代码解析

 def PCM(self, cam, f):
        n,c,h,w = f.size()
        cam = F.interpolate(cam, (h,w), mode='bilinear', align_corners=True).view(n,-1,h*w)
        # 对 CAM 进行双线性插值,使其尺寸与特征图 f 一致,然后将其展平
        f = self.f9(f)
        f = f.view(n,-1,h*w) 
        f = f/(torch.norm(f,dim=1,keepdim=True)+1e-5) # 将特征图 f 展平,然后归一化
		
        aff = F.relu(torch.matmul(f.transpose(1,2), f),inplace=True)
        aff = aff/(torch.sum(aff,dim=1,keepdim=True)+1e-5)
        # 计算特征之间的关联矩阵(亲和性矩阵),并进行归一化
        cam_rv = torch.matmul(cam, aff).view(n,-1,h,w)
        # 将 CAM 与关联矩阵相乘,得到经过协同显著图增强的 CAM
        return cam_rv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Env1sage

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值