弱监督语义分割代码最终输出的是什么

本文介绍了一个使用Python计算多类别分类任务中假阳性和假阴性率的方法,通过混淆矩阵(confusionmatrix)的行和列求和,计算出IoU(IntersectionoverUnion),并分析除背景类别外的平均假阳性率和平均假阴性率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    gtj = confusion.sum(axis=1)
    resj = confusion.sum(axis=0)
    gtjresj = np.diag(confusion)
    denominator = gtj + resj - gtjresj
    fp = 1. - gtj / denominator
    fn = 1. - resj / denominator
    iou = gtjresj / denominator
    print("total images", n_img)
    print(fp[0], fn[0])
    print(np.mean(fp[1:]), np.mean(fn[1:]))

输出结果分别对应

FPFN
平均假阳性率平均假阴性率

平均假阳性率(mean false positive
rate)是指在多个类别中,被错误地预测为正类的样本所占的比例的平均值。在这里,np.mean(fp[1:])表示除了第一个类别(背景)之外的所有类别的平均假阳性率。

平均假阴性率(mean false negative
rate)是指在多个类别中,被错误地预测为负类的样本所占的比例的平均值。在这里,np.mean(fn[1:])表示除了第一个类别之外的所有类别的平均假阴性率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Env1sage

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值