基于树莓派4B与NCNN的YOLOv8高效部署实战:无GPU环境下的C++加速优化全流程指南**


在这里插入图片描述

引言

随着人工智能的快速发展,边缘设备部署成为热门话题,特别是在资源受限的环境中实现高效目标检测。对于许多手中没有GPU或NPU的小伙伴来说,基于CPU进行推理加速变得尤为关键。此前我已经在 Windows 平台上基于 C++ 和 ONNX Runtime 框架实现了 YOLOv8 的高效推理(可参考 CSDN 博文:Windows环境下 C++ onnxruntime框架yolov8推理)。本篇文章则聚焦于 在树莓派4B上,基于 NCNN 框架部署 YOLOv8 的实战教程,从模型转换到部署测试,全流程详解并附完整源码。


一、模型准备

1. 下载YOLOv8模型

在部署前,我们需要准备一个轻量化的 YOLOv8 模型。推荐使用 yolov8n.pt,这是 YOLOv8 中体积最小、速度最快的版本,适用于资源受限场景。

git
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博导ai君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值