文章目录

引言
随着人工智能的快速发展,边缘设备部署成为热门话题,特别是在资源受限的环境中实现高效目标检测。对于许多手中没有GPU或NPU的小伙伴来说,基于CPU进行推理加速变得尤为关键。此前我已经在 Windows 平台上基于 C++ 和 ONNX Runtime 框架实现了 YOLOv8 的高效推理(可参考 CSDN 博文:Windows环境下 C++ onnxruntime框架yolov8推理)。本篇文章则聚焦于 在树莓派4B上,基于 NCNN 框架部署 YOLOv8 的实战教程,从模型转换到部署测试,全流程详解并附完整源码。
一、模型准备
1. 下载YOLOv8模型
在部署前,我们需要准备一个轻量化的 YOLOv8 模型。推荐使用 yolov8n.pt
,这是 YOLOv8 中体积最小、速度最快的版本,适用于资源受限场景。
git