前言
耗费整整1天,我终于成功地将自己训练的 yolov3-tiny.weights
模型部署到了树莓派上,并使用神经计算棒(NCS2)完成了模型推理。这段旅程充满挑战,涉及模型格式转换、版本兼容、推理配置与调试等多个环节。为了帮助像我一样的初学者少走弯路,特撰此文记录整个部署优化过程,包括每一个关键步骤、踩过的坑与解决办法。
本文不仅介绍如何使用 OpenVINO 工具链将 YOLOv3-Tiny 模型成功部署至树莓派,还会涵盖从权重转换、模型优化、设备适配到推理测试等多个方面的细节,并附带常用命令与资源链接,适合深度学习初学者与嵌入式开发者参考学习。
一、树莓派部署 OpenVINO
1.1 官方文档推荐
在部署 OpenVINO 时,建议优先参考 Intel 官方文档,其内容详尽、结构清晰,并不需要科学上网,适合国内用户。
-
安装指南(树莓派):