基于NCNN和OpenVINO的YOLOv3-Tiny部署优化实践:树莓派与神经棒实战指南

前言

耗费整整1天,我终于成功地将自己训练的 yolov3-tiny.weights 模型部署到了树莓派上,并使用神经计算棒(NCS2)完成了模型推理。这段旅程充满挑战,涉及模型格式转换、版本兼容、推理配置与调试等多个环节。为了帮助像我一样的初学者少走弯路,特撰此文记录整个部署优化过程,包括每一个关键步骤、踩过的坑与解决办法。

本文不仅介绍如何使用 OpenVINO 工具链将 YOLOv3-Tiny 模型成功部署至树莓派,还会涵盖从权重转换、模型优化、设备适配到推理测试等多个方面的细节,并附带常用命令与资源链接,适合深度学习初学者与嵌入式开发者参考学习。


一、树莓派部署 OpenVINO

1.1 官方文档推荐

在部署 OpenVINO 时,建议优先参考 Intel 官方文档,其内容详尽、结构清晰,并不需要科学上网,适合国内用户。

  • 安装指南(树莓派):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博导ai君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值