自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2841)
  • 资源 (284)
  • 收藏
  • 关注

原创 [深度学习]基于YOLO高质量项目源码+模型+GUI界面汇总

以下项目全部是本人亲自编写代码,项目汇总如下:

2024-09-28 11:14:38 1552

原创 [数据集汇总]智慧交通-铁路相关数据集汇总

此外,铁轨异物入侵检测数据集能够及时发现并预警潜在的安全隐患,铁轨及卡扣分割数据集、铁轨石枕裂纹缺陷检测数据集等则通过语义分割技术,为铁路维护提供精准的数据支持。智慧交通在铁路领域的应用日益广泛,其数据集汇总涵盖了多个关键方面,为轨道交通、自动化、计算机等专业的研究提供了丰富的资源。这些数据集主要包括铁路手势分类、铁路旁边电气设备检测、铁轨异物入侵检测、铁路铁轨分割、铁轨及卡扣分割、铁轨石枕裂纹缺陷检测等,涵盖了图像分类、目标检测、语义分割等多种技术需求。

2024-09-15 12:12:40 2009

原创 电力行业电气领域相关数据集下载地址汇总输电线路变电站电网应用数据集汇总(全网最全)

例如,输电线路图像数据集通过无人机或直升机拍摄,包含了杆塔、绝缘子、导线等详细图像,为目标检测、分类和异常检测提供了丰富的素材。此外,还有针对变电站烟火检测、导线破损检测等特定任务的数据集,这些数据集通过收集实际场景中的图像和视频,帮助研究人员训练更加精准的算法。电力大数据不仅数据量庞大,类型也多种多样,包括结构化数据如交易电价、售电量等,以及非结构化数据如视频监控图像。通过深度学习和数据挖掘技术,研究人员能够从中发现潜在的模式和规律,为电力行业的决策和规划提供有力支持。

2024-08-23 21:42:27 3213

原创 C# OpenCvSharp DNN Onnx项目源码汇总

本项目涉及C#编程相关,包含深度学习、图像处理、opencvsharp操作等相关编程项目,现在将项目汇总如下:

2024-08-18 08:39:43 766

原创 2024年图像分类数据集大合集所有下载地址汇总

2024年目标检测数据集大合集所有下载地址汇总

2024-04-30 07:33:02 1891 2

原创 2024年目标检测数据集大合集所有下载地址汇总

数据集名称下载地址瓷砖瑕疵检测数据集VOC+YOLO标注.zip点我下载道路路标交通标志检测数据集VOC+YOLO格式877张4类别.zip点我下载钢材缺陷检测数据集VOC+YOLO格式386张5类别.7z点我下载中国交通标志检测数据集VOC+YOLO格式5998张58类别.7z点我下载道路交通事故检测数据集VOC+YOLO格式11819张2类别.7z点我下载钢丝绳破损灼伤缺陷检测数据集VOC+YOLO格式1318张2类别.7z点我下载公共场所危险物品检测数据集VOC+YOLO格式1431

2024-04-30 07:30:19 5318 1

原创 垃圾可回收可降解有害垃圾检测数据集VOC+YOLO格式6019张10类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)plastic_non_biodegradable_can_recyclable 框数 = 652。rubber_non_biodegradable_can_recyclable 框数 = 130。glass_non_biodegradable_can_recyclable 框数 = 729。标注数量(txt文件个数):6019。

2025-05-07 20:38:55 110

原创 垃圾医疗有害可回收垃圾检测数据集VOC+YOLO格式3996张12类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)recyclable-waste-nylonbag 框数 = 213。recyclable-waste-paperbag 框数 = 109。recyclable-waste-clothes 框数 = 200。recyclable-waste-paper 框数 = 213。标注数量(xml文件个数):3996。标注数量(txt文件个数):3996。

2025-05-07 18:58:37 62

原创 垃圾厨余垃圾可回收垃圾有害垃圾检测数据集VOC+YOLO格式2739张4类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["hazardous waste","kitchen waste","other waste","recyclable waste"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2739。标注数量(xml文件个数):2739。标注数量(txt文件个数):2739。

2025-05-07 18:08:03 74

原创 室内烟雾明火检测数据集VOC+YOLO格式2469张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["fire","smoke"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):2469。标注数量(xml文件个数):2469。标注数量(txt文件个数):2469。

2025-05-06 16:38:05 70

原创 明厨亮灶-厨房场景下烟雾明火检测数据集VOC+YOLO格式1175张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["fire","smoke"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):1175。标注数量(xml文件个数):1175。标注数量(txt文件个数):1175。

2025-05-06 16:07:27 67

原创 行人闯红灯检测数据集VOC+YOLO格式9843张5类别

比如你可以用这个数据集训练模型出来,然后编写代码对人行横道划定区域,同时摄像头对准人行横道和交通灯,当检测到区域有人且为红灯时候可以判定是行人闯红灯。标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["green","person","red","traffic light","yellow"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

2025-05-06 11:28:06 185

原创 偷钱包行为检测数据集VOC+YOLO格式922张1类别有增强

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。有320张图片是原图剩余为增强图片。图片数量(jpg文件个数):922。标注数量(xml文件个数):922。标注数量(txt文件个数):922。标注类别名称:["pick"]使用标注工具:labelImg。标注规则:对类别进行画矩形框。pick 框数 = 925。

2025-05-05 19:47:13 218

原创 基于yolov11的人员睡岗检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面

基于YOLOv11的人员睡岗检测系统通过AI算法与实时视频分析技术,可精准识别监控场景中的人员状态,包括正常状态(normal)、睡眠状态(sleep)及玩手机行为(play)。据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["normal","play","sleep"]

2025-05-05 17:12:26 522

原创 睡岗检测数据集VOC+YOLO格式1198张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):1198。标注数量(xml文件个数):1198。标注数量(txt文件个数):1198。标注类别名称:["sleep"]sleep 框数 = 1198。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2025-05-05 15:06:48 316

原创 基于yolov11的灭火器检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面

YOLO是一种先进的目标检测算法,具有检测速度快、精度高、模型轻便等多重优势。它能够实时、准确地识别图像或视频中的灭火器。YOLO算法将目标检测任务视为回归问题,通过单个神经网络即可完成目标边界框的定位和类别的预测,大大提高了检测速度。随着YOLO算法的不断迭代,如YOLOv5、YOLOv8等版本的推出,其在检测精度和速度上都有了显著提升。

2025-05-05 10:43:16 837

原创 灭火器检测数据集VOC+YOLO格式3255张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["extinguisher"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):3255。标注数量(xml文件个数):3255。标注数量(txt文件个数):3255。

2025-05-05 09:44:38 194

原创 基于yolov11的打电话玩手机检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面

其动态锚点自适应机制与多层级特征融合架构,使模型能够精准捕捉不同角度、遮挡状态下的设备形态,对小尺寸设备(如折叠屏手机)及复杂背景(如金属工具干扰)的识别准确率超95%。系统依托YOLOv11深度学习模型,可实时检测并定位画面中出现的手机,一旦识别到目标设备即判定为违规行为,并触发预警机制。数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)在目标检测任务中,评估模型的性能是至关重要的。

2025-05-05 07:10:57 1003

原创 [python] 打开文件所在位置并选中文件

在 Windows 上,使用 subprocess.run(['explorer', '/select,', file_path], shell=True) 是一种可行的方法来打开文件资源管理器并选中指定的文件。如果你希望使用 subprocess.run(['explorer', '/select,', file_path], shell=True),请注意确保 file_path 是一个安全的字符串,并且不包含任何可能被 shell 解释的特殊字符。否则,这可能会导致命令注入漏洞。

2025-05-05 06:46:10 98

原创 打电话玩手机检测数据集VOC+YOLO格式8061张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["phone"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):8061。标注数量(xml文件个数):8061。标注数量(txt文件个数):8061。标注规则:对类别进行画矩形框。

2025-05-04 17:42:02 183

原创 人员睡岗玩手机检测数据集VOC+YOLO格式3853张3类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["normal","play","sleep"]据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):3853。标注数量(xml文件个数):3853。标注数量(txt文件个数):3853。

2025-05-04 13:08:29 193

原创 课堂玩手机睡觉检测数据集VOC+YOLO格式2388张3类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["normal","play phone","sleep"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(xml文件个数):2388。标注数量(txt文件个数):2388。

2025-05-04 12:13:03 143

原创 基于yolov8的狗狗未带护具犬类未带护具检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

然而现实中,部分大型犬存在未佩戴牵引绳、嘴套等护具的情况,这不仅增加了犬只走失和意外伤人的风险,还可能埋下公共安全隐患,对社会的和谐稳定构成潜在威胁。这通常是因为模型参数过多,而训练数据量相对较小,导致模型学习到了训练数据中的噪声或特定模式,而无法泛化到新的数据。精确度是模型预测为正样本的实例中,真正为正样本的比例。传统的大型犬护具检测方式主要依赖人工巡检,但这种方式效率低下、覆盖范围有限,难以满足城市大规模、高密度宠物管理的需求,且易受环境光线、犬只状态及巡检人员主观判断的影响,出现漏检或误判。

2025-05-04 09:18:02 693

原创 狗狗未带护具犬未带护具检测数据集VOC+YOLO格式2194张3类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["dangerousdog","noprotect","protect"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(xml文件个数):2194。标注数量(txt文件个数):2194。

2025-05-04 08:47:59 122

原创 基于yolov8的皮肤癌检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

这通常是因为模型参数过多,而训练数据量相对较小,导致模型学习到了训练数据中的噪声或特定模式,而无法泛化到新的数据。原因一:欠拟合:如果训练数据量过小,模型可能无法学习到足够的特征,从而影响预测效果,导致欠拟合,进而使MAP偏低。在目标检测任务中,评估模型的性能是至关重要的。(2)增强数据预处理:对数据进行适当的预处理和增强,如数据归一化、缺失值填充、数据扩增等,以提高模型的泛化能力。(1)优化模型结构:根据任务和数据集的特点选择合适的模型,并尝试使用不同的网络架构和构件来改进模型性能。

2025-05-04 07:40:29 847

原创 皮肤癌检测数据集VOC+YOLO格式3296张2类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Benign-skin-cancer","Malignant-skin-cancer"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(txt文件个数):3296。标注规则:对类别进行画矩形框。

2025-05-03 21:17:30 196

原创 [C++][cuda]vscode上运行cuda hello的cmake项目

【代码】[C++][cuda]vscode上运行cuda hello的cmake项目。

2025-05-03 19:59:59 86

原创 野生动物检测数据集VOC+YOLO格式7119张9类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Badger","Black Bear","Cheetah","Hare","Leopard Cat","Musk-Deer","Northeast Tiger","Northeast-Leopard","Red-Fox"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

2025-05-03 17:09:41 302

原创 陶瓷陶器缺陷检测VOC+YOLO格式938张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["crack","hole"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):938。标注数量(xml文件个数):938。标注数量(txt文件个数):938。

2025-05-03 16:49:59 158

原创 白蚁检测数据集VOC+YOLO格式949张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["termite","wings"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):949。标注数量(xml文件个数):949。标注数量(txt文件个数):949。

2025-05-02 12:37:24 147

原创 MATLAB R2024a安装教程

软件大小:约12.08G安装环境:Win10~Win11或更高下载好安装包,可以在网上找个安装包,比如我用国内镜像matlab地址github.com/futureflsl/matlab-chinese-mirror,这样下载稍微快点。

2025-05-01 20:43:25 642

原创 光伏太阳能板损坏灰尘缺陷检测数据集VOC+YOLO格式4903张5类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["bird-droppings","crack","dust","faulty","no faulty"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(txt文件个数):4903。

2025-04-30 10:48:11 209

原创 动物检测数据集VOC+YOLO格式13025张13类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["bear","buffalo","cat","dog","elephant","gaurd dog","goat","leopard","monkey","otherentities","raccoon","tiger","wildboar"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

2025-04-30 09:51:44 147

原创 篮球足球排球三种球类检测数据集VOC+YOLO格式12423张3类别有增强

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Basketball","Football","Volleyball"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(xml文件个数):12423。标注数量(txt文件个数):12423。

2025-04-30 09:19:49 201

原创 罗非鱼病害检测数据集VOC+YOLO格式1243张4类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Abdominal-distension","Exophthalmia-Pop-eye-","Skin-erosions-Hemorrhagic-lesion-","Tilapia"]=>[腹胀,眼球突出症,皮肤糜烂出血性病变,罗非鱼]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

2025-04-30 09:05:43 161

原创 花椰菜病害检测数据集VOC+YOLO格式594张5类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Bacterial Spot rot","Black Rot","Downy Mildew","healthy leaf","healthy_bulb"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注数量(xml文件个数):594。标注数量(txt文件个数):594。

2025-04-30 08:58:01 200

原创 花椰菜病害分类数据集1504张4类别

类别名称:["Bacterial Spot Rot","Black Rot","Downy Mildew","Healthy"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理分类存放。数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片。Bacterial Spot Rot 图片数:393。Downy Mildew 图片数:396。图片数量(jpg文件个数):1504。Black Rot 图片数:230。Healthy 图片数:485。

2025-04-30 08:51:33 205

原创 水污染检测数据集VOC+YOLO格式2487张4类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["hunshui","wuran","zawu","zhengchang"]=>[浑水,污染,杂物,正常]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(txt文件个数):2487。

2025-04-29 21:42:55 343

原创 秸秆焚烧烟火烟雾检测数据集VOC+YOLO格式5481张3类别有增强

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["burning","fire","smoke"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(xml文件个数):5481。标注数量(txt文件个数):5481。标注规则:对类别进行画矩形框。

2025-04-29 21:02:09 191

原创 花卉病害检测数据集VOC+YOLO格式2163张8类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Black-Spot","Cercospora-Leaf-Spot","Downy-Mildew","Fresh-Leaf","Powdery-Mildew","Rose","Rose-Botrytis-Blight","Rose-Slug"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

2025-04-29 20:34:11 264

ruby193-rubygem-ZenTest-4.8.1-1.el6.centos.alt.noarch.rpm

ruby193-rubygem-ZenTest-4.8.1-1.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-v8-devel-3.14.5.10-2.el6.centos.alt.x86_64.rpm

ruby193-v8-devel-3.14.5.10-2.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-runtime-1.1-9.el6.centos.alt.x86_64.rpm

ruby193-runtime-1.1-9.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-rubygem-sprockets-doc-2.4.5-4.el6.centos.alt.noarch.rpm

ruby193-rubygem-sprockets-doc-2.4.5-4.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sinatra-doc-1.3.2-12.el6.centos.alt.noarch.rpm

ruby193-rubygem-sinatra-doc-1.3.2-12.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sqlite3-1.3.6-3.el6.centos.alt.x86_64.rpm

ruby193-rubygem-sqlite3-1.3.6-3.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-rubygem-test_declarative-0.0.5-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-test_declarative-0.0.5-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sinatra-1.3.2-12.el6.centos.alt.noarch.rpm

ruby193-rubygem-sinatra-1.3.2-12.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sprockets-2.4.5-4.el6.centos.alt.noarch.rpm

ruby193-rubygem-sprockets-2.4.5-4.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygems-devel-1.8.23-50.el6.centos.alt.noarch.rpm

ruby193-rubygems-devel-1.8.23-50.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygems-devel-1.8.23-49.el6.centos.alt.noarch.rpm

ruby193-rubygems-devel-1.8.23-49.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygems-1.8.23-49.el6.centos.alt.noarch.rpm

ruby193-rubygems-1.8.23-49.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sass-3.1.20-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-sass-3.1.20-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sass-rails-3.2.5-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-sass-rails-3.2.5-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sass-doc-3.1.20-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-sass-doc-3.1.20-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sass-rails-doc-3.2.5-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-sass-rails-doc-3.2.5-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-rspec-expectations-doc-2.11.1-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-rspec-expectations-doc-2.11.1-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-rspec-mocks-doc-2.11.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-rspec-mocks-doc-2.11.1-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-rspec-core-2.11.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-rspec-core-2.11.1-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-rspec-mocks-2.11.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-rspec-mocks-2.11.1-2.el6.centos.alt.noarch.rpm

2025-02-11

tensorrt安装后测试python代码+onnx模型

tensorrt安装后测试python代码+onnx模型

2025-02-16

v8314-1.1-9.el6.centos.alt.x86_64.rpm

v8314-1.1-9.el6.centos.alt.x86_64.rpm

2025-02-11

v8-devel-3.14.5.10-6.el6.centos.alt.x86_64.rpm

v8-devel-3.14.5.10-6.el6.centos.alt.x86_64.rpm

2025-02-11

scl-utils-20120927-11.el6.centos.alt.x86_64.rpm

scl-utils-20120927-11.el6.centos.alt.x86_64.rpm

2025-02-11

scl-utils-build-20120927-11.el6.centos.alt.x86_64.rpm

scl-utils-build-20120927-11.el6.centos.alt.x86_64.rpm

2025-02-11

v8-3.14.5.10-6.el6.centos.alt.x86_64.rpm

v8-3.14.5.10-6.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-v8-3.14.5.10-2.el6.centos.alt.x86_64.rpm

ruby193-v8-3.14.5.10-2.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-scldevel-1.1-9.el6.centos.alt.x86_64.rpm

ruby193-scldevel-1.1-9.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-rubygem-ZenTest-doc-4.8.1-1.el6.centos.alt.noarch.rpm

ruby193-rubygem-ZenTest-doc-4.8.1-1.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-tilt-doc-1.3.3-10.el6.centos.alt.noarch.rpm

ruby193-rubygem-tilt-doc-1.3.3-10.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-treetop-1.4.10-6.el6.centos.alt.noarch.rpm

ruby193-rubygem-treetop-1.4.10-6.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-tzinfo-doc-0.3.33-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-tzinfo-doc-0.3.33-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-uglifier-doc-1.2.6-4.el6.centos.alt.noarch.rpm

ruby193-rubygem-uglifier-doc-1.2.6-4.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-thor-doc-0.18.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-thor-doc-0.18.1-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-test_declarative-doc-0.0.5-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-test_declarative-doc-0.0.5-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-thor-0.18.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-thor-0.18.1-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-therubyracer-doc-0.11.0-0.9.beta5.el6.centos.alt.noarch.rpm

ruby193-rubygem-therubyracer-doc-0.11.0-0.9.beta5.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-therubyracer-0.11.0-0.9.beta5.el6.centos.alt.x86_64.rpm

ruby193-rubygem-therubyracer-0.11.0-0.9.beta5.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-rubygem-tilt-1.3.3-10.el6.centos.alt.noarch.rpm

ruby193-rubygem-tilt-1.3.3-10.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sqlite3-doc-1.3.6-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-sqlite3-doc-1.3.6-3.el6.centos.alt.noarch.rpm

2025-02-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除