【动态规划】Leetcode 279. 完全平方数【中等】

本文介绍了如何使用动态规划算法解决给定整数n下,组成和为n的完全平方数的最少数量问题。Java代码展示了如何初始化dp数组,状态转移方程以及计算最终结果的过程。时间复杂度为O(n*sqrt(n)),空间复杂度为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3
解释:12 = 4 + 4 + 4

解题思路

  • 1、使用动态规划求解,定义一个一维数组dp,其中dp[i]表示和为i的完全平方数的最少数量。
  • 2、初始化数组dp,长度为n + 1,全部初始化为最大值,dp[0]为0。
  • 3、对于每个数字i,遍历从1到sqrt(i)的完全平方数j*j,更新dp[i]为dp[i - j * j] + 1和dp[i]中的较小值。
    动态规划的状态转移方程为:
  •   dp[i] = min(dp[i], dp[i - j * j] + 1),其中 1 <= j * j <= i
    
    这个方程的意思是,如果当前的数 i 可以由 j * j 和 i - j * j 组成,那么 dp[i] 就可以通过 dp[i - j * j] + 1 来更新,即将 j * j 加入到和为 i 的完全平方数的组合中。
  • 4、最终返回dp[n]即可。

Java实现

public class PerfectSquares {
   
   
    public int numSquares(int n) {
   
   
        int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值