题目描述
一个如下的 6 \times 66×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2\ 4\ 6\ 1\ 3\ 52 4 6 1 3 5 来描述,第 ii 个数字表示在第 ii 行的相应位置有一个棋子,如下:
行号 1\ 2\ 3\ 4\ 5\ 61 2 3 4 5 6
列号 2\ 4\ 6\ 1\ 3\ 52 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。
输入格式
一行一个正整数 nn,表示棋盘是 n \times nn×n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入输出样例
输入 #1 复制
6
输出 #1 复制
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
说明/提示
【数据范围】
对于 100%100% 的数据,6 \le n \le 136≤n≤13。
题目翻译来自NOCOW。
USACO Training Section 1.5
分析
这个要注意的是两条对角线的表示,一个是行列和一个是行列差,但是行列差可能是负数,但数组的下标不能是负数,所以加个常数
#include<iostream>
#include<string.h>
const int size=100;
int a[size];
int b1[size];
int b2[size];
int b3[size];
int ans=0;
int n;
using namespace std;
void dfs(int k)
{
if(k>n)
{
ans++;
if(ans<=3)
{
for(int i=1;i<=n;i++)
{
cout<<a[i]<<' ';
}
cout<<endl;
}
return;
}
for(int i=1;i<=n;i++)
{
if(b1[i]==0 && b2[k+i]==0 && b3[k-i+15]==0)
{
a[k]=i;
b1[i]=b2[k+i]=b3[k-i+15]=1;
dfs(k+1);
a[k]=0;
b1[i]=b2[k+i]=b3[k-i+15]=0;
}
}
}
int main()
{
cin>>n;
dfs(1);
cout<<ans<<endl;
}