P1219 [USACO1.5]八皇后 Checker Challenge

本文介绍了一种寻找跳棋棋盘上所有合法棋子布局的算法。通过深度优先搜索(DFS)结合剪枝策略,实现了对6x6棋盘上棋子布局的有效搜索,确保每行、每列及对角线上棋子的数量符合规定。文章提供了C++实现代码,并展示了前三个解及解的总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
一个如下的 6 \times 66×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

上面的布局可以用序列 2\ 4\ 6\ 1\ 3\ 52 4 6 1 3 5 来描述,第 ii 个数字表示在第 ii 行的相应位置有一个棋子,如下:

行号 1\ 2\ 3\ 4\ 5\ 61 2 3 4 5 6

列号 2\ 4\ 6\ 1\ 3\ 52 4 6 1 3 5

这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。

输入格式
一行一个正整数 nn,表示棋盘是 n \times nn×n 大小的。

输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

输入输出样例
输入 #1 复制
6
输出 #1 复制
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
说明/提示
【数据范围】
对于 100%100% 的数据,6 \le n \le 136≤n≤13。

题目翻译来自NOCOW。

USACO Training Section 1.5

分析

这个要注意的是两条对角线的表示,一个是行列和一个是行列差,但是行列差可能是负数,但数组的下标不能是负数,所以加个常数

#include<iostream>
#include<string.h>
const int size=100;
int a[size];
int b1[size];
int b2[size];
int b3[size];
int ans=0;
int n;
using namespace std;
void dfs(int k)
{
   if(k>n)
   {
       ans++;
       if(ans<=3)
       {
           for(int i=1;i<=n;i++)
           {
               cout<<a[i]<<' ';

           }
           cout<<endl;
       }
       return;
   }
   for(int i=1;i<=n;i++)
   {
         if(b1[i]==0 && b2[k+i]==0 && b3[k-i+15]==0)
         {
          a[k]=i;
             b1[i]=b2[k+i]=b3[k-i+15]=1;
          dfs(k+1);
          a[k]=0;
          b1[i]=b2[k+i]=b3[k-i+15]=0;
         }
   }
}
int main()
{

    cin>>n;
    dfs(1);
    cout<<ans<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值