P1873 砍树

米尔科使用高科技伐木机,在保护生态的同时,精准获取所需木材。面对百万级树木,如何快速确定最佳切割高度?本篇介绍了一种高效算法,通过二分查找实现O(n log n)的时间复杂度,确保在规定时间内完成运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
伐木工人米尔科需要砍倒M米长的木材。这是一个对米尔科来说很容易的工作,因为他有一个漂亮的新伐木机,可以像野火一样砍倒森林。不过,米尔科只被允许砍倒单行树木。

米尔科的伐木机工作过程如下:米尔科设置一个高度参数H(米),伐木机升起一个巨大的锯片到高度H,并锯掉所有的树比H高的部分(当然,树木不高于H米的部分保持不变)。米尔科就行到树木被锯下的部分。

例如,如果一行树的高度分别为20,15,10和17,米尔科把锯片升到15米的高度,切割后树木剩下的高度将是15,15,10和15,而米尔科将从第1棵树得到5米,从第4棵树得到2米,共得到7米木材。

米尔科非常关注生态保护,所以他不会砍掉过多的木材。这正是他为什么尽可能高地设定伐木机锯片的原因。帮助米尔科找到伐木机锯片的最大的整数高度H,使得他能得到木材至少为M米。换句话说,如果再升高1米,则他将得不到M米木材。

输入格式
第1行:2个整数N和M,N表示树木的数量(1<=N<=1000000),M表示需要的木材总长度(1<=M<=2000000000)

第2行:N个整数表示每棵树的高度,值均不超过1000000000。所有木材长度之和大于M,因此必有解。

输出格式
第1行:1个整数,表示砍树的最高高度。

输入输出样例
输入 #1 复制
5 20
4 42 40 26 46
输出 #1 复制
36

在一些有关单调性的查找,可以考虑二分查找二分查找本身复杂度是logn,内部有个判断的算法,复杂度是o(n),所以该题复杂度是nlong(n),是可以在规定时间运算完的

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll maxn=2000001;
ll a[maxn],M,N;
bool judge(ll x)
{
    ll total=0;
    for(ll i=1;i<=N;i++)
    {
        if(a[i]>x)
            total+=a[i]-x;
    }
    return total>=M;
}
int main()
{
    cin>>N>>M;
    for(ll i=1;i<=N;i++)
        cin>>a[i];
    ll begin=0,end=1e9,ans,mid;
    while(begin<=end)
    {
        mid=begin+(end-begin)/2;
        if(judge(mid))
        {
            ans=mid;
            begin=mid+1;
        }
        else end=mid-1;
    }
    cout<<ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值