基于协同过滤的动漫推荐系统设计与实现

摘 要
当下,动漫已融入全球大众生活,产业发展迅猛,作品数量井喷式增长。但面对海量动漫资源,用户在找寻符合自身兴趣作品时困难重重。传统热门榜单、编辑推荐等方式,难以契合用户个性化需求。因此,开发动漫推荐系统迫在眉睫,它能助力用户精准定位心仪动漫,提升观看体验。
动漫推荐系统通过对课题的深入学习和用户需求的分析,本系统选择Java语言作为开发语言,并采用SpringBoot框架实现系统功能,同时利用Vue框架完成页面效果的编码,利用协同过滤算法实现智能推荐。结合系统的实际应用场景,最终实现了用户和管理员两大角色,主要功能包括动漫番剧、动漫信息等功能,旨在为用户提供高效便捷的动漫推荐服务。
经黑盒测试验证,本动漫推荐系统所有功能均已达标,完全满足上线要求。系统能基于算法,为用户提供精准、便捷的动漫推荐服务,全方位满足多元观看动漫的需求。
关键词:动漫推荐;协同过滤;Java;SpringBoot;Vue

Abstract
Currently, anime has become deeply integrated into global popular culture, with rapid industrial development and an explosive growth in the number of works. However, faced with an overwhelming amount of anime content, users often struggle to find works that align with their personal interests. Traditional methods such as popular charts and editor recommendations often fail to meet users’ personalized needs. Therefore, the development of an anime recommendation system is urgent, as it can help users precisely locate their desired anime and enhance their viewing experience.
The anime recommendation system, through in-depth study of the subject and analysis of user needs, has chosen Java as the development language and implemented system functionality using the SpringBoot framework. Additionally, the Vue framework was utilized for page effect coding, and the collaborative filtering algorithm was employed to achieve intelligent recommendations. Based on the system’s actual application scenarios, it ultimately realized two main roles: users and administrators. The primary functions include anime series, anime information, and more, aiming to provide users with efficient and convenient anime recommendation services.
After validation through black-box testing, all functionalities of this anime recommendation system have met the required standards, fully satisfying the requirements for going online. The system can provide users with precise and convenient anime recommendations based on algorithms, comprehensively fulfilling diverse anime viewing needs.
Keywords: Anime Recommendation; Collaborative Filtering; Java;Spring Boot; Vue

1 绪论
1.1选题背景
随着互联网的普及与数字技术的进步,动漫产业迎来爆发式增长,每年新推出的动漫作品数以万计。从日本的热血冒险动漫,到欧美的超级英雄系列,题材愈发多元。然而,作品数量的激增导致用户陷入选择困境,传统基于热门排行或人工推荐的方式,既难以契合用户个性化需求,也无法有效筛选海量内容。与此同时,大数据、机器学习技术的成熟,为个性化推荐系统的构建提供了技术支持。在这样的背景下,开发动漫推荐系统,借助算法分析用户偏好,实现动漫作品的精准推送,不仅能提升用户体验,还能推动动漫产业的高效运营。
1.2 选题意义
在动漫作品数量呈指数级增长的当下,动漫推荐系统有着不可忽视的多重意义。对用户而言,它节省了筛选动漫的时间,精准推送符合个人兴趣的作品,提升观看体验,激发对动漫文化的热爱。从动漫产业角度看,推荐系统有助于挖掘小众优质作品,让其得到曝光,优化产业资源配置,还能助力动漫企业精准定位市场,开发更贴合用户需求的作品。此外,通过数据沉淀和分析,推荐系统为动漫文化传播提供方向指引,助力动漫文化在全球范围获得更广泛的传播,加速动漫产业的数字化转型。
1.3国内外研究现状
1.3.1国外研究现状
在国外,动漫推荐系统的研究与应用已颇具成果。YouTube凭借先进算法,依据用户浏览、点赞、评论等行为,精准推送动漫,每日为大量用户发现感兴趣的作品。Crunchyroll作为知名动漫平台,运用协同过滤技术,分析海量用户观看历史与评分,为动漫迷提供个性化推荐,助力其探索小众佳作。Plex Anime Multi Source Agent(AMSA)则通过融合TVDB和AniDB数据库信息,结合自定义扫描器,为用户打造全面且个性化的动漫观看体验。
1.3.2国内研究现状
国内动漫推荐系统研究与应用成果颇丰。哔哩哔哩作为国内头部二次元社区,凭借海量用户行为数据,运用协同过滤、深度学习等算法,为用户精准推送动漫。一些研究者则利用Python爬虫技术,从各大动漫网站采集数据,结合基于内容、协同过滤等算法,打造个性化推荐系统。此外,基于Spring Boot、Vue.js等技术构建的国漫推荐系统,也能根据用户浏览、收藏等行为,提供定制化推荐,助力用户发现优质国漫。
1.4主要研究内容
基于协同过滤算法的动漫推荐系统,需深入探索多个维度。在数据收集与预处理阶段,广泛采集用户对动漫的评分、浏览历史、收藏行为等数据,并对数据进行清洗,处理缺失值与异常值,为后续分析筑牢根基。在算法选型与优化层面,要在基于用户和基于物品的协同过滤算法间做抉择,并通过引入矩阵分解、深度学习等技术优化算法,降低计算复杂度,提升推荐准确性。系统设计与实现环节,需构建数据存储模块、推荐引擎模块和用户交互模块,保障系统稳定运行。此外,还要通过实验验证推荐系统的性能,借助召回率、准确率、覆盖率等指标,不断优化系统。
1.5论文组织结构
本文主要论述的是基于协同过滤算法的动漫推荐系统的设计与实现,本文具体的组织结构如下说明所示。第一章,主要是对本课题的课题背景以及其他内容等内容进行了简要的分析。第二章,主要是对本课题涉及到的技术进行分析介绍。第三章,主要是对本课题的功能需求分析等内容进行概述分析。第四章,主要是对本课题的功能设计等内容进行概述分析。第五章,主要是详细的对本课题的功能模块进行详细说明分析,通过系统具体的功能模块的具体实现过程。第六章,主要是对本课题的功能测试进行分析说明。第七章就是对本系统的总结性说明。

2 开发技术介绍
2.1Java语言
在动漫推荐系统中,Java凭借其诸多特性发挥着关键作用。它具备面向对象的编程范式,可将动漫、用户等实体抽象成类和对象,让代码结构清晰且易于维护。跨平台性使系统能在不同环境稳定运行。丰富的类库可用于实现网络通信、数据库交互,如利用 JDBC 连接数据库存储动漫信息和用户行为。同时,Java 的多线程机制能处理高并发请求,保证系统响应速度。通过 Spring等框架还能快速搭建系统,实现推荐算法,为用户提供精准推荐。
2.2SpringBoot框架
Spring Boot是构建动漫推荐系统的理想框架,优势突出。它具备自动配置功能,极大简化开发流程,开发者能专注于核心业务逻辑,快速搭建系统。内嵌服务器,如Tomcat、Jetty等,无需额外配置服务器环境,提高开发效率。拥有强大的依赖管理机制,借助Maven或Gradle,可轻松管理项目依赖,避免版本冲突。还支持多种持久化方式,方便与数据库交互,存储动漫和用户数据。其监控和管理功能,可实时监控系统运行状态,保障系统稳定运行,为开发高性能、易维护的动漫推荐系统提供有力支持。
2.3Vue框架
Vue框架在动漫推荐系统中发挥着重要作用,它是轻量级的JavaScript框架,易于上手,学习成本低,能让开发者迅速搭建前端界面。具有响应式数据绑定特性,数据变化时视图会自动更新,能及时反馈推荐结果的变动。组件化开发模式使代码可复用性强,将动漫展示、搜索框、推荐列表等功能拆分成独立组件,便于开发和维护。Vue还拥有丰富的插件和工具生态系统,如Vue Router实现路由管理,方便用户在不同页面间切换;Vuex管理应用的状态,让数据在各组件间高效流转,打造出流畅、交互性强的动漫推荐系统界面。
2.4协同过滤算法
协同过滤算法在动漫推荐系统里占据核心地位,分为基于用户和基于物品两种类型。基于用户的协同过滤,通过分析用户间行为的相似性,找出兴趣相投的用户群体,将该群体喜爱的动漫推荐给目标用户。基于物品的协同过滤,则聚焦动漫间的相似度,依据用户对已观看动漫的偏好,推荐与之相似的动漫。这类算法能有效挖掘用户潜在喜好,解决数据稀疏问题,并且不依赖动漫内容信息,适用性强。不过,它也存在冷启动和数据稀疏性难题,需要搭配其他技术优化,从而实现更精准的动漫推荐。
2.5MySQL数据库
MySQL作为开源关系型数据库管理系统,在动漫推荐系统搭建中发挥着不可或缺的作用。它成本低,且支持多种操作系统,具备高度灵活性。借助SQL语句,MySQL能对动漫信息进行高效存储、查询与管理,将动漫的名称、类型、上映时间、评分等数据精准分类。在处理用户数据时,可记录用户的浏览、收藏、评分等行为,为推荐算法提供数据支撑。此外,MySQL拥有良好的扩展性,能够通过主从复制实现读写分离,有效应对高并发场景,保证系统在大量数据和频繁操作下稳定运行。

3 系统分析
3.1系统需求分析
2024年,动漫圈亮点频出。播放端,《完美世界》《斗破苍穹》热度居高不下;评分榜,《夏目友人帐柒》以温情剧情揽获高口碑;新番《胆大党》凭借新颖设定热搜不断,《蓝色监狱》第二季也凭优质内容获得大量弹幕。当前,动漫产业繁荣,作品繁多,观众选番困难。搭建推荐系统,既能帮观众“排忧解难”,又能助力动漫产业良性发展。因此,运用计算机技术,开发一套动漫推荐系统。不仅可以帮助管理员可以高效的管理动漫信息,还能实现用户可以提供便捷的观看动漫的服务。
3.2系统开发目的
搭建动漫推荐系统,首要目的是化解观众在海量动漫作品前无从选择的难题,借助推荐算法为其精准匹配符合口味的动漫,提升观看体验。对动漫产业而言,推荐系统能优化作品分发,助力优质内容脱颖而出,提升流量转化效率,增加营收。此外,系统也能收集用户反馈,为动漫创作提供方向,促进动漫行业创新,推动动漫文化传播。
3.3可行性分析
动漫推荐系统架构设计阶段,可行性研究通过系统性评估技术路径、资源适配及风险控制,明确技术选型与迭代优先级,优化资源配置并降低风险,确保系统方案既满足当前业务需求,又具备技术弹性与可持续扩展性。
3.3.1技术可行性
搭建动漫推荐系统,在技术层面具备十足可行性。后端开发,Java的Spring Boot框架能快速搭建稳定服务,借助MyBatis等实现数据持久化。算法上,协同过滤、基于内容推荐算法成熟,可实现精准推荐。前端采用Vue框架,构建交互性强的界面。此外,云计算服务提供稳定的服务器资源,保障系统运行。这些成熟技术,为动漫推荐系统开发筑牢了技术根基。
3.3.2经济可行性
动漫推荐系统在经济层面极具可行性,开发阶段,开源框架如Spring Boot、Vue大幅降低技术成本。硬件上,云服务器按需付费,有效控制服务器租赁费用。运营过程中,系统吸引流量后,可通过广告投放、与动漫平台合作盈利。精准推荐能提升用户对动漫作品的消费意愿,助力产业增收,从长远来看,投入产出比优势明显,具有突出的经济价值。
3.3.3操作可行性
它在操作层面简便可行,系统界面设计遵循用户习惯,借助Vue等前端技术打造简洁直观的交互界面,新用户也能快速上手。后台管理系统通过模块化设计,简化数据录入、算法调整等操作。同时,系统设有详细的使用指南与客服支持,当用户或管理员遇到问题时,能及时获取帮助,保障系统顺畅使用。
3.3.4社会可行性
动漫推荐系统拥有良好的社会可行性。从文化传播角度看,它能让不同风格、题材的动漫触达更多受众,促进动漫文化在全球范围内的传播。对于社交互动,围绕推荐内容,动漫爱好者可展开讨论交流,增进人际沟通。而且,系统可针对不同年龄、群体设置分级推荐,保护青少年身心健康,契合社会文化与道德规范,得到大众的广泛认可。
3.4系统功能性需求
功能性需求分析通过用例驱动方法界定系统核心功能模块,采用UML建模明确用户角色的操作边界与交互流程。基于用户故事地图定义动漫功能的交互原型与业务规则,输出包含数据流程图、界面原型及权限矩阵的功能规格文档,确保开发成果精准匹配业务场景与用户体验目标。
3.4.1管理员用例分析
在本系统里,管理员拥有最高权限。从数据获取层面,能查看所有功能模块信息;在数据管理方面,不仅可对动漫信息、番剧详情展开查看,还能执行添加操作,完成新内容录入。借助这一权限,管理员得以全方位把控系统数据,确保系统数据的及时更新与有序管理。凭借上述权限管理体系,系统数据的有序性与时效性得到保障。管理员用例图如图3-1所示。

图3-1 管理员用例图
3.4.2用户用例分析
在动漫推荐系统里,用户作为基础角色,享有浏览动漫信息的功能权限。用户能够查看各类动漫信息、番剧详情,快速了解动漫的简介、类型、评分等内容。这些操作能帮助用户筛选出感兴趣的动漫,丰富自身的动漫观看选择。借助系统这一便捷的浏览机制,实现用户需求与动漫资源的高效对接,极大提升动漫获取效率。用户用例图如图3-2所示。

图3-2 用户用例图
3.5系统非功能性需求
3.5.1 系统易用性的需求
系统易用性需求包括直观友好的界面设计,简化操作流程,支持多终端适配,提供实时反馈与智能引导,具备容错机制与便捷的帮助功能,确保用户无需专业培训即可快速完成动漫信息的查看等核心操作,同时满足不同年龄段及残障群体的无障碍使用需求。
3.5.2 系统安全性的需求
系统安全性需求包括用户数据加密存储与传输、基于RBAC的分级权限管理、防SQL注入及XSS攻击的安全防护机制、敏感操作双重认证、定期安全漏洞扫描与应急响应预案,确保用户隐私保护符合《个人信息保护法》,防范数据泄露风险并保障系统稳定运行。
3.5.3 系统可靠性的需求
系统可靠性需求有保障7×24小时无间断服务的高可用性架构,支持灾难恢复的功能模块的数据备份与恢复机制,便于故障排查的错误处理与日志记录功能,减少单点故障风险的硬件冗余与负载均衡技术,确保动漫推荐数据的服务持续可靠。

4 系统设计
4.1系统业务流程设计
动漫推荐系统业务围绕用户和管理员展开。用户进入系统,其行为数据驱动推荐算法生成专属推荐列表,用户可查看详情、收藏或评价。管理员则负责动漫信息管理与系统设置维护。数据更新时,算法重新运算,助力系统协同运作,精准服务用户,业务流程如图4-1所示。

图4-1 系统业务流程图
4.2系统功能模块设计
在开展动漫推荐系统开发前,团队深入分析用户需求,决定在系统中设置用户与管理员两类角色。通过严谨的权限设计,赋予二者不同的功能模块。管理员凭借专属权限,能对动漫信息进行添加、修改、删除等管理操作。普通用户在系统前台界面,即可浏览动漫作品、查看详情,并对感兴趣的动漫发表评论。系统功能布局一目了然,详情可参考系统总体功能模块图4-2。

图4-2 系统总体功能模块图
4.3 系统数据库设计
数据库设计在动漫推荐系统搭建中,占据着基础性的关键地位,是构建系统后台数据存储与处理机制的核心环节。在动漫推荐系统里,数据库中实体以及实体间关系的设计,如同精密仪器的齿轮,精准啮合才能确保运转流畅,它直接影响数据操作的效率。从项目开发的维度看,科学合理的数据库设计,是动漫推荐系统开发得以顺利推进的保障,从长远运维来说,更是系统后续稳定、高效运行的基石。
4.3.1数据库逻辑结构设计
在系统开发进程中,数据库概念设计通常会采用E.R图,将设计思路直观呈现出来。动漫推荐系统的业务丰富,产生的数据量庞大且关系复杂。因此在进行数据库概念设计时,难以对所有数据进行全面梳理,将围绕主要实体展开分析。完成概念设计后,下面将把工作重心转移到数据库逻辑结构设计上,深入剖析其架构搭建方式,探究背后的运行逻辑与设计原理。
(1)用户信息实体属性图,如图4-3所示。

图4-3 用户信息实体属性图
(2)动漫信息实体属性图,如图4-4所示。

图4-4 动漫信息实体属性图
(3)动漫番剧实体属性图,如图4-5所示。

图4-5 动漫番剧实体属性图
(4)交流论坛实体属性图,如图4-6所示。

图4-6 交流论坛实体属性图
4.3.2数据库表结构设计
当完成动漫推荐系统总体实体关系图的绘制,我们就清晰掌握了系统数据关系的全貌,接下来便能有条不紊地开展数据库表设计工作。在信息化系统开发过程中,数据库表结构并非抽象存在,最终都要落实到一个个数据库字段上,字段的合理设置直接决定了表结构的优劣。下面,我们会对动漫推荐系统的核心数据库表,就其具体的字段结构展开细致讲解。这些字段不仅是搭建数据库表的“砖块”,更是实现系统数据存储与管理功能的重要基础。
(1)用户信息表,主要存储用户的账号、姓名等信息,具体的表结构如表4-1所示。
表4-1 用户信息表
序号 列名 数据类型 长度 主键 说明
1 id bigint 20 是 主键
2 addtime timestamp 否 创建时间
3 yonghuzhanghao varchar 200 否 用户账号
4 mima varchar 200 否 密码
5 yonghuxingming varchar 200 否 用户姓名
6 touxiang longtext 否 头像
7 xingbie varchar 200 否 性别
8 lianxifangshi varchar 200 否 联系方式
9 status int 11 否 状态
10 passwordwrongnum int 11 否 密码错误次数
(2)动漫信息表,主要存储动漫信息的标题、语言等信息,具体的表结构如表4-2所示。
表4-2动漫信息表
序号 列名 数据类型 长度 主键 说明
1 id bigint 20 是 主键
2 addtime timestamp 否 创建时间
3 title varchar 200 否 标题
4 picture longtext 否 图片
5 genre varchar 200 否 类型
6 directedby varchar 200 否 导演
7 starring varchar 200 否 主演
8 lang varchar 200 否 语言
9 zpgj varchar 200 否 制片国家/地区
10 pingfen double 否 评分
11 plrs int 11 否 评论人数
12 comment longtext 否 评论内容
13 plname varchar 200 否 评论人
14 initialreleasedate varchar 200 否 首播
15 jishu int 11 否 集数
16 summary longtext 否 剧情简介
17 detailurl longtext 否 详情地址
18 thumbsupnum int 11 否 赞
19 crazilynum int 11 否 踩
20 clicktime datetime 否 最近点击时间
21 clicknum int 11 否 点击次数
22 discussnum int 11 否 评论数
23 storeupnum int 11 否 收藏数

(3)动漫番剧表,主要存储动漫番剧的标题、评分等信息,具体的表结构如表4-3所示。
表4-3 动漫番剧表
序号 列名 数据类型 长度 主键 说明
1 id bigint 20 是 主键
2 addtime timestamp 否 创建时间
3 title varchar 200 否 标题
4 cover longtext 否 图片
5 badge varchar 200 否 徽章
6 subtitle varchar 200 否 子标题
7 score double 否 评分
8 huashu varchar 200 否 话数
9 zhuifan varchar 200 否 追番
10 mediaid varchar 200 否 媒体ID
11 link varchar 200 否 详情地址
12 thumbsupnum int 11 否 赞
13 crazilynum int 11 否 踩
14 discussnum int 11 否 评论数
15 storeupnum int 11 否 收藏数
(4)交流论坛表,主要存储动漫番剧的标题、评分等信息,具体的表结构如表4-4所示。
表4-4 交流论坛表
序号 列名 数据类型 长度 主键 说明
1 id bigint 20 是 主键
2 addtime timestamp 否 创建时间
3 title varchar 200 否 帖子标题
4 content longtext 否 帖子内容
5 parentid bigint 20 否 父节点id
6 userid bigint 20 否 用户id
7 username varchar 200 否 用户名
8 avatarurl longtext 否 头像
9 isdone varchar 200 否 状态
10 istop int 11 否 是否置顶
11 toptime datetime 否 置顶时间

5 系统实现
5.1管理员端功能实现
5.1.1 看板功能实现
看板功能为动漫推荐系统的管理员提供了直观便捷的数据查看方式。借助这一功能,管理员能够轻松浏览动漫信息、类型分布、语言统计等可视化数据,快速掌握数据的整体状况,从而更高效地对数据展开可视化分析。可视化展示打破了数据的抽象性,让管理员可以一目了然地获取关键信息,助力做出准确判断。看板功能的实际效果可参照图5-1,从中能清晰了解该功能的界面布局与数据呈现方式。

图5-1 看板功能效果图
在搭建动漫推荐系统的看板功能时,选用Apache Echarts技术,来实现各类可视化数据的编码渲染。作为一款强大的数据可视化工具,Echarts让看板中的动漫信息、类型统计等数据,以直观、美观的形式呈现。如需了解看板功能核心的代码逻辑,可查看图5-2,其中对关键代码做了完整呈现。

图5-2 看板功能实现核心代码截图
5.1.2 用户功能实现
动漫推荐系统的用户功能板块,为管理员提供了全面管理用户信息的操作权限。借助这一功能,管理员不仅能够添加用户账号、姓名等基础信息,还能对已录入的账号信息执行修改或删除操作。这类灵活便捷的管理操作,极大地提升了系统用户数据管理的精准性与高效性。通过图5-3,可直观了解用户功能模块的页面布局与操作流程,熟悉各项用户管理功能的交互设计,轻松掌握系统的用户管理功能。

图5-3 用户功能效果图
在搭建动漫推荐系统用户功能时,为了优化数据展示,系统用户数据的分页查询,通过后端代码的Page方法,搭配前端框架技术编码实现。这种前后端协同的方式,确保用户数据能快速、精准地按页展示。若想了解用户分页查询功能具体的代码逻辑,查看图5-4便能获取核心代码片段,洞悉前后端代码交互的实现细节。

图5-4 用户功能实现核心代码截图
5.1.3 动漫信息功能实现
在动漫推荐系统的动漫信息功能模块,管理员拥有丰富的操作权限。一方面,管理员能够手动录入动漫标题、导演等关键信息;另一方面,系统支持通过爬虫技术获取动漫信息。考虑到爬虫技术在应用过程中的敏感性,本系统仅展示爬虫所能达成的效果,并未集成真实的爬取功能。借助这一功能设计,既规避了潜在风险,又为信息获取提供了多样化思路。如需直观了解动漫信息功能的操作界面和呈现效果,可参考图5-5。

图5-5 动漫信息功能效果图
搭建动漫推荐系统的动漫信息功能时,为实现列表数据展示,采用前后端协同开发模式。后端借助List方法,与前端代码相互配合,完成编码工作。前后端通过接口获取数据信息,确保数据的稳定传输与展示。若想深入了解动漫信息功能的具体实现逻辑,查看图5-6就能获取前后端核心代码,洞悉数据展示功能的开发细节。

图5-6 动漫信息功能实现核心代码截图
5.1.4 动漫番剧功能实现
动漫推荐系统的动漫番剧功能,为管理员提供了一套全方位的管理工具。管理员不仅能够手工录入番剧标题、徽章等基础信息,还能借助爬虫技术收集番剧资讯,极大丰富了番剧信息来源。此外,管理员还能查看用户对动漫番剧留下的评论,便于了解用户的反馈与喜好。这一功能设计,实现了番剧信息管理和用户反馈收集的一体化。若想直观了解动漫番剧功能的操作界面与呈现效果,可参考图5-7。

图5-7 动漫番剧功能效果图
在搭建动漫推荐系统的动漫番剧功能时,为实现管理员添加动漫番剧信息的操作,采用前后端协作的开发模式。后端运用Save方法处理数据,前端负责界面交互,两者紧密配合完成编码。凭借这一设计,系统实现数据的有效录入。若想了解动漫番剧添加功能的具体实现逻辑,查看图5-8,就能获取前后端核心代码片段。

图5-8 动漫番剧功能实现核心代码截图
5.1.5交流论坛功能实现
交流论坛功能赋予了动漫推荐系统管理员多项实用的管理权限。在这一功能模块中,管理员能实时查看用户之间的交流记录,全方位了解用户在论坛中的互动情况。不仅如此,管理员还能通过置顶操作,将重要的论坛信息固定在显眼位置,方便所有用户快速获取。这种管理方式极大提升了论坛信息传播的效率,优化了用户交流体验。若想直观了解交流论坛功能的界面样式与操作效果,可参照图5-9。

图5-9 交流论坛功能效果图
在动漫推荐系统的交流论坛功能里,管理员拥有对论坛信息进行置顶或取消置顶的操作权限。为实现这一功能,系统采用了Vue框架进行编码开发。Vue框架的高效性和灵活性,确保了置顶操作能够快速响应且稳定运行。如果想了解交流论坛置顶功能的具体代码实现逻辑,可查看图5-10,从中获取核心代码片段,掌握前后端交互的实现细节。

图5-10 论坛交流功能实现核心代码截图
5.2用户端功能实现
5.2.1 动漫信息功能实现
动漫推荐系统前台的动漫信息功能,为用户打造了便捷的动漫信息交互窗口。在这里,用户不仅能浏览动漫标题、图片等详细信息,还能通过评论分享自己对动漫的见解,或点击收藏,将喜爱的动漫纳入个人收藏库。这种互动式设计,极大提升了用户对动漫信息的参与感与体验感。若想直观了解动漫信息功能的界面布局和操作效果,可通过图5-11,沉浸式体验各项功能的交互流程。

图5-11 动漫信息功能效果图
在动漫推荐系统的动漫信息功能开发里,主要运用前端Vue框架,并结合其他前端技术进行编码。Vue框架凭借其组件化、响应式等特性,能高效搭建出交互性强的用户界面。其他前端技术的配合,则进一步完善了功能细节与视觉效果。若你想探究该功能的具体实现逻辑,查看图5-12即可获取核心代码,了解前后端交互的实现细节。

图5-12 动漫信息功能实现核心代码截图
5.2.2 动漫番剧功能实现
动漫推荐系统中的动漫番剧功能,极大地丰富了用户的使用体验。当进入这一功能模块,用户能便捷地浏览动漫番剧的标题、徽章、评分等详细信息,从而对番剧形成直观认识。不仅如此,系统为用户搭建了互动交流的桥梁,用户可以就番剧内容发表评论,分享自己的看法与感受,也能一键收藏喜爱的番剧,方便日后回看。若想直观感受动漫番剧功能的界面设计与操作效果,参考图5-13,便能获得全面的了解。

图5-13 动漫番剧功能效果图
在动漫推荐系统的前台动漫番剧板块,为了给用户呈现清晰、有序的番剧列表,系统采用前后端协同开发的方式。后端借助List方法对番剧数据进行高效整理和提取,前端则负责将这些数据以美观、易用的界面形式展示给用户。通过这种前后端紧密配合的编码实现,用户在前台页面能够流畅地浏览动漫番剧列表。若你对这一功能的具体实现细节感兴趣,可查看图5-14,其中展示了动漫番剧功能实现的核心代码。

图5-14 动漫番剧功能实现核心代码截图
5.2.3 交流论坛功能实现
动漫推荐系统的交流论坛功能,为用户搭建了一个自由开放的交流空间。在此功能模块内,用户既能发布自己的观点与见解,主动开启话题讨论,又能查看其他用户发布的帖子,从中获取多元化的信息与想法,参与热烈的线上互动。这种双向互动模式极大地提升了用户间的交流体验,让每位用户都能沉浸在畅所欲言的氛围中。若想直观了解交流论坛功能的界面布局和实际操作效果,参考图5-15,便可清晰获取相关信息。

图5-15 交流论坛功能效果图
在动漫推荐系统的交流论坛功能开发里,为了实现出色的页面渲染效果,采用前端Vue框架,并与其他前端技术相结合。Vue框架以其高效的组件化开发和响应式设计,能快速搭建出交互性强的页面。其他前端技术的融入,则进一步优化了视觉与交互体验。若想了解该功能具体的代码实现,查看图5-16,就能获取核心代码,明晰前后端的交互逻辑。

图5-16 交流论坛功能实现核心代码截图

6 系统测试
6.1测试目的
动漫推荐系统开展系统测试,首要目的是确保系统功能正常运行,让用户能顺利完成动漫浏览、评论、收藏,管理员能执行数据管理等操作。其次,优化系统性能,测试系统在高并发场景下的响应速度,避免卡顿。再者,检测数据准确性与安全性,防止数据泄露或错误展示。最后,通过测试及时发现兼容性问题,保障系统在不同设备与浏览器上稳定运行,为用户打造优质体验。
6.2测试方法
动漫推荐系统的测试方法丰富多元。功能测试方面,模拟用户与管理员操作,验证动漫搜索、推荐、评论等功能能否正常实现。性能测试时,借助工具模拟大量并发请求,测试系统响应时间、吞吐量等,评估负载能力。安全测试,查找系统漏洞,防止数据泄露。兼容性测试则在不同操作系统、浏览器和移动设备上试用,检查系统是否适配。此外,还可开展用户体验测试,收集反馈,优化交互设计。
6.3测试环境
动漫推荐系统测试环境搭建围绕硬件、软件与网络展开。硬件层面,涵盖台式机、笔记本、平板和手机等不同终端,满足多场景测试需求。软件方面,操作系统囊括Windows、MacOS、Linux等主流桌面系统,以及Android、iOS等移动系统,并搭配Chrome、Firefox、Safari等常用浏览器。开发与测试工具选择Eclipse、IntelliJ IDEA等,数据库采用MySQL、Oracle。网络环境兼顾有线与无线,模拟2G、3G、4G、5G和WiFi,确保系统在不同网络下稳定运行 ,保障测试全面、可靠。
6.4系统功能测试
通过前文对各类测试方法的介绍,结合本系统的特性,在对动漫推荐系统开展功能测试时,将采用黑盒测试法。鉴于本系统功能繁多,且多数功能模块的实现逻辑相近,为提高测试效率与针对性,本章节将着重针对动漫推荐系统的主要功能,详细阐述对应的测试用例,以便精准验证系统功能是否符合预期。
6.4.1用户功能测试
动漫推荐系统的用户功能板块,为管理员提供了全面管理用户信息的操作权限。借助这一功能,管理员不仅能够添加用户账号、姓名等基础信息,还能对已录入的账号信息执行修改或删除操作。这类灵活便捷的管理操作,极大地提升了系统用户数据管理的精准性与高效性。用户功能测试用例表如表6-1所示。
表6-1 用户功能测试用例
编号 测试功能 操作 预期结果 实际结果
1 用户信息的添加 管理员新增通过用户管理的新增页面,新增一条用户账号信息。使用新增的用户账号进行登录 使用新增的用户账号信息可以进行登录且能进入前台界面 与预期结果一致,使用新增的用户账号信息可以进行登录且能进入前台界面
2 用户账号信息的修改 管理员将刚刚新增的用户账号信息密码由123456改成12345,使用原来的账号密码信息进行登录 用户使用原来的账号密码登录失败,页面提示账号或密码错误 与预期结果一致,用户使用原来的账号密码登录失败,页面提示账号或密码错误
6.4.2动漫信息功能测试
在动漫推荐系统里,动漫信息功能模块赋予管理员全面的管理权限。管理员既能手动录入动漫标题、导演等关键数据,系统也提供爬虫获取信息的思路。鉴于爬虫技术的敏感性,系统仅展示其潜在成果,并未集成真实爬取功能,在降低风险的同时,拓宽了信息收集途径。在系统前台,动漫信息功能为用户打造便捷的交互窗口。用户不仅能浏览动漫标题、图片等详情,还能评论、收藏动漫,大幅提升了参与感与体验感。动漫信息功能的各项操作是否达标,可通过表6-3的测试用例表进行验证。
表6-2 动漫信息功能测试用例
编号 测试功能 操作 预期结果 实际结果
1 动漫信息的添加 管理员添加一部动漫信息,用户在前台进行查看具体的动漫信息 用户在前台可以查看到详细的动漫信息 与预期结果一致,用户在前台可以查看到详细的动漫信息
2 动漫信息的爬取 管理员在动漫信息页面进行爬取数据,点击爬取数据,稍后观察页面的数据变化 管理员发现动漫信息页面数据发生了变化 与预期结果一致,管理员发现动漫信息页面数据发生了变化
6.4.3交流论坛功能测试
动漫推荐系统的交流论坛功能,为管理员和用户都带来了出色体验。对于管理员而言,该功能模块提供了实用的管理权限,他们可以实时查看用户交流记录,掌握论坛互动全貌,还能通过置顶重要信息,提升信息传播效率,优化用户交流体验。而对于用户,交流论坛构建了自由开放的空间,大家既能主动发帖开启话题,又能浏览他人帖子,获取多元信息,参与热烈互动,双向互动模式让交流体验大幅提升。该功能是否正常、高效,可依据表6-3的测试用例表进行检验。
表6-3 交流论坛功能测试用例
编号 测试功能 操作 预期结果 实际结果
1 交流论坛的添加 用户添加一条交流论坛信息,管理员在后台交流论坛功能进行查看 管理员可以查看到用户添加的交流论坛信息 与预期结果一致,管理员可以查看到用户添加的交流论坛信息
2 交流论坛的评论 用户对某一条论坛信息进行评论,管理员在后台查看评论信息 管理员可以查看到用户的评论信息 与预期结果一致,管理员可以查看到用户的评论信息
6.5测试总结
本次动漫推荐系统系统测试,从功能、性能、安全及兼容性多维度展开。功能测试表明,用户端浏览、评论、收藏,管理员端数据管理等功能均运转正常。性能测试显示,系统在高并发场景下响应迅速,吞吐量达标。安全测试未发现重大漏洞,保障了数据安全。兼容性测试证实,系统在各类主流设备与浏览器上运行稳定。尽管系统整体表现良好,但仍存在部分页面交互细节有待优化。后续将针对性改进,持续提升系统质量。

7总结与展望
7.1总结
在撰写动漫推荐系统论文过程中,对整个项目的理解更加深入。开篇通过大量调研,梳理了动漫推荐系统的发展背景与现状,明确了研究的必要性。随后,在系统设计与实现部分,详细阐述了系统架构、功能模块与技术选型,从用户和管理员功能开发,到前后端技术的结合,将项目完整呈现。测试环节,围绕功能、性能、安全等方面开展测试,验证系统可用性。在撰写过程中,我遇到了技术术语表述和数据图表规范的难题,通过查阅资料、请教导师得以解决。这次论文撰写不仅巩固了专业知识,也锻炼了逻辑思维与文字表达能力,为后续学习和工作积累了宝贵经验。
7.2展望
在动漫推荐系统后续迭代中,功能优化和新模块拓展将成为重点。功能优化上,进一步优化推荐算法,结合用户浏览、收藏、评论行为,以及热门动漫趋势,实现更个性化推荐,提升推荐精准度。 新模块方面,增设社区排行榜,依据用户活跃度和帖子热度,展示热门用户和话题,增强社区互动氛围;搭建直播功能,邀请动漫爱好者或专业人士直播解说动漫,拉近同好距离。另外,融入AR互动体验,用户扫描动漫周边,获取虚拟角色互动、动画片段展示等新奇体验。最后,打通多平台数据,让用户在不同设备间同步使用记录,享受无缝衔接的服务。

参考文献
[1]符云浩.基于深度学习的个性化动漫推荐系统的设计与实现[D].华东师范大学,2024.
[2]陈静.智能技术在动漫创作与传播中的影响分析[J].电子技术,2024,53(04):398-399.
[3]田奥黔.Nintendo Switch游戏推荐系统的研究与实现[D].华东师范大学,2023.DOI:10.27149/d.cnki.ghdsu.2023.004796.
[4]朱鑫.基于多目标进化的情境感知推荐算法研究及应用[D].浙江师范大学,2023.DOI:10.27464/d.cnki.gzsfu.2023.000924.
[5]韩媛.基于改进的协同过滤算法的个性化推荐研究[D].中国石油大学(北京),2023.DOI:10.27643/d.cnki.gsybu.2023.001349.
[6]郭家玮.基于深度学习的动漫推荐系统[D].电子科技大学,2023.DOI:10.27005/d.cnki.gdzku.2023.005926.
[7]梁润.影情智能推荐算法及推荐系统研究[D].安徽理工大学,2022.DOI:10.26918/d.cnki.ghngc.2022.000525.
[8]谢岱杉.窄化与破圈:推荐系统对跨圈层传播的两种作用——基于哔哩哔哩的数据挖掘研究[J].新媒体研究,2022,8(18):114-118.DOI:10.16604/j.cnki.issn2096-0360.2022.18.012.
[9]王哲吉.基于机器学习的视频推荐模型及应用研究[D].山东财经大学,2022.DOI:10.27274/d.cnki.gsdjc.2022.001126.
[10]张婷玉.基于动漫领域用户需求的改进协同过滤推荐算法[D].厦门大学,2022.DOI:10.27424/d.cnki.gxmdu.2022.001027.
[11]林金镇.一种融合隐式反馈数据的协同过滤推荐算法[D].厦门大学,2021.DOI:10.27424/d.cnki.gxmdu.2021.000366.
[12]余胜辉.层次聚类算法基于Spark的实现及在推荐系统中的应用[D].南京邮电大学,2020.DOI:10.27251/d.cnki.gnjdc.2020.001440.
[13]刘宇宸.视频点播系统的推荐算法的研究与实现[D].北京邮电大学,2020.DOI:10.26969/d.cnki.gbydu.2020.002171.
[14]徐晟杰.基于数据挖掘的电视节目个性化推荐研究及实现[D].曲阜师范大学,2019.
[15]卢劲源.S公司基于社交网络的信息流推荐系统研究[D].华中科技大学,2018.
[16]孙康高.基于模型融合的可视交互推荐方法研究与实现[D].浙江工业大学,2018.
[17]Reynaldi ,Istiono W .Content-based Filtering and Web Scraping in Website forRecommended Anime[J].Asian Journal of Research in Computer Science,2023,15(2):32-42.
[18]Badal S ,Debangan T ,Nilutpal N , et al.RikoNet: A Novel Anime Recommendation Engine[J].Multimedia Tools and Applications,2023,82(21):32329-32348.
[19]Girsang S A ,Faruq A B ,Herlianto R H , et al.Collaborative Recommendation System in Users of Anime Films[J].Journal of Physics Conference Series,2020,1566(1):012057.
[20]Te S T ,Cheng T C ,Feng Y H .An Intelligent Recommendation System for Animation Scriptwriters’ Education[J].EURASIA Journal of Mathematics, Science and Technology Education,2016,12(5).
致谢
大学时光转瞬即逝,如今我已完成毕业设计与论文撰写。在这一过程中,我遭遇诸多困难与挫折,幸得老师和同学们的热心帮助,方能顺利克服。在此,我要向我的指导老师XXX老师致以最诚挚的感谢。从论文开题报告的精心指导,到毕业设计测试环节的悉心把关,再到论文写作的耐心指导与严谨评阅,导师投入了大量心血。他不厌其烦地答疑解惑,不仅让我在计算机科学与技术领域的知识水平得以显著提升,更让我深刻领悟到严谨、端正的治学态度和工作态度的重要性,这将对我未来的职业发展产生深远且积极的影响。
满怀感恩,要向XXX学院的全体授课老师致敬。在专业课程教学中,老师们认真负责,以深入浅出的讲解,为我打开了计算机科学与技术领域的广阔天地,极大地拓宽了我的专业视野,让我熟练掌握多项专业技能,这些知识与技能成为我顺利完成毕业设计和论文的坚实基石。同时,我也要诚挚感谢参与我毕业论文答辩的老师们,在百忙之中抽出宝贵时间,为我的学业成果把关,助力我在学术道路上不断成长。
漫漫求学路,我满心感恩。同学们在学习与生活中与我携手同行,亲友们于背后默默关怀。是你们的支持与鼓励,让我在困难前无畏,始终热忱向学,得以顺利完成学业,谢谢你们!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值