逻辑回归
【分类问题 || y为离散值】
(1)使用线性回归解决分类问题
【使用线性回归解决逻辑回归不是一个很好的办法】
(2)假设函数
【通过sigmoid函数,使得h(x)的值在 0 ~ 1 之间】
(3)假设函数输出的含义
【h(x):当输入为x时,输出为y的概率】
(4)逻辑回归的决策边界
【选择一个值作为决策边界的判断值,例如下图选的是0.5】
【h(x)对应的线就是决策边界,与参数有关,不是训练集的属性】
(5)非线性回归边界
(6)代价函数
【假设函数 定义】
【如果直接使用线性回归的损失函数,得到的将会是一个非凹函数,但是我们想要的是凹函数,所以不能直接使用】
【逻辑回归的代价函数】
(7)简化代价函数
(8)更新参数
(9)高级优化
【举例】
【注意:Ocatve中的下标是从 1 开始的】
(10)逻辑回归解决多类别分类问题(1对多)
【训练多个分类器】
【选择 h 值最大的类别】
正则化
(1)过拟合的例子
(2)解决方法
(3)修改代价函数
【加入正则化项】
【lamda过大可能会出现欠拟合】
(4)线性回归 正则化
【梯度下降】
【正规方程解】
【加入正则化项后,解决了 X^T * X 不可逆的问题】
(5)逻辑回归 正则化
【梯度下降】
【更高级的优化 : 改变代价函数、导数】