吴恩达机器学习学习笔记 --- 逻辑回归 + 正则化

本文深入探讨逻辑回归在分类问题中的应用,解释了为什么线性回归不适合解决分类任务,以及如何通过sigmoid函数转换输出。内容涵盖逻辑回归的假设函数、决策边界、代价函数优化及正则化技术,旨在防止过拟合并提高模型泛化能力。同时,讨论了逻辑回归在多类别分类问题中的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归

【分类问题 || y为离散值】

(1)使用线性回归解决分类问题

【使用线性回归解决逻辑回归不是一个很好的办法】

(2)假设函数

【通过sigmoid函数,使得h(x)的值在 0 ~ 1 之间】

(3)假设函数输出的含义

【h(x):当输入为x时,输出为y的概率】

(4)逻辑回归的决策边界

【选择一个值作为决策边界的判断值,例如下图选的是0.5】

【h(x)对应的线就是决策边界,与参数有关,不是训练集的属性】

 (5)非线性回归边界 

(6)代价函数

【假设函数 定义】

 【如果直接使用线性回归的损失函数,得到的将会是一个非凹函数,但是我们想要的是凹函数,所以不能直接使用】

【逻辑回归的代价函数】

(7)简化代价函数

(8)更新参数

 (9)高级优化

 【举例】

【注意:Ocatve中的下标是从 1 开始的】 

 (10)逻辑回归解决多类别分类问题(1对多)

【训练多个分类器】

【选择 h 值最大的类别】

正则化

(1)过拟合的例子

 

 (2)解决方法

 (3)修改代价函数

 【加入正则化项】

 

【lamda过大可能会出现欠拟合】

 

(4)线性回归 正则化

【梯度下降】

 

 【正规方程解】

【加入正则化项后,解决了 X^T * X 不可逆的问题】

 

(5)逻辑回归  正则化

【梯度下降】

 

【更高级的优化 : 改变代价函数、导数】

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值