文档矫正算法:DocTr++

文档弯曲矫正(Document Image Rectification)的主要作用是在图像处理领域中,对由于拍摄、扫描或打印过程中产生的弯曲、扭曲文档进行校正,使其恢复为平整、易读的形态。

一. 论文和代码

论文地址:https://arxiv.org/abs/2304.08796
代码地址:https://github.com/fh2019ustc/DocTr-Plus

二. 原理简介

论文提出了一种新的数据处理方式,解决了以前文档矫正只能处理带有边界信息的完整文档,文章通过数据处理定义了三种类型的训练数据。(a)包含完整文档边界,(b)包含部分文档边界,(c)不包含文档边界。
在这里插入图片描述
算法框架如下:对于任意弯曲的文档,作者首先通过CNN抽取特征,然后通过transformer结构进行编码和解码,最后用Flow Head预测偏移场,用偏移场矫正弯曲图片。
在这里插入图片描述
网络架构如下图所示:
在这里插入图片描述
首先, 在畸变特征编码器中,DocTr++采用自注意力机制捕获形变文档的结构特征,并构建多尺度编码器,进行特征提取和融合。其中,编码器由三个子模块组成,每个子模块包含两个标准的 Transformer 编码层。这使得本方法既能编码具有高分辨率纹理细节的特征,又能获得低分辨率具有高层语义信息的特征。
接下来,矫正解码器接收编码器输出的多尺度特征以及可学习的矫正提示向量序列(Learnable Queries),输出解码后的表征用于后续坐标映射矩阵的预测。其中,可学习的矫正提示向量序列零初始化,并加上固定的位置编码。

三. 实验细节

input:288x288
output:288x288
learning rate:1e-4
实验结果如下:
在这里插入图片描述

四. 总结

DocTr++突破了现有多数矫正方法的场景局限性,能够恢复日常生活中常见的各种形变文档图像。为了实现优秀的矫正效果,DocTr++采用了一种多尺度编解码器结构,构建各类形变文档图像与无形变文档图像之间的逐像素映射关系。

五. 博主点评

  1. 优点:该论文是2023年的IEEE,在当时的指标上达到了SOTA;
  2. 缺点:后处理过于简单,对于无边界的文档,处理后mask以外的区域没有填补,跟商用矫正算法还存在较大差距。

欢迎技术交流:
在这里插入图片描述

<think>好的,我现在要帮用户解决票据图像预处理的问题。首先,我需要理解用户的需求。用户提到的是“票据图像的预处理任务”,可能涉及扫描或拍摄的票据图像,需要进行处理以便后续的OCR识别或其他分析。常见的预处理步骤可能包括去噪、矫正、二值化等。 接下来,我应该回忆之前用户的历史对话。之前用户询问过图像去模糊的GitHub库,所以我提供的回答可能已经涉及到一些图像恢复的技术。现在用户转向票据预处理,可能需要更具体的步骤和工具推荐。 用户可能的真实需求是什么?他们可能在处理大量票据图像,需要自动化预处理流程,以提高后续处理的准确性。例如,扫描的票据可能有倾斜、阴影、模糊或噪点,这些都会影响OCR的结果。因此,预处理步骤需要包括几何矫正、去模糊、去噪、光照调整、二值化等。 用户可能没有明确提到的深层需求可能包括处理速度、易用性、集成到现有系统中,或者是否需要开源工具。考虑到之前的回答推荐了GitHub库,用户可能倾向于使用开源解决方案,或者需要代码示例。 接下来,我需要整理票据预处理的关键步骤,并推荐合适的工具库。常见的步骤可能有: 1. 几何矫正(去倾斜、透视变换) 2. 去模糊(如之前提到的DeblurGAN-v2) 3. 去噪(中值滤波、非局部均值去噪) 4. 光照均衡(消除阴影、反光) 5. 二值化(自适应阈值处理) 6. 边缘检测与ROI提取(定位票据区域) 7. 分辨率增强(超分模型,如ESRGAN) 然后,针对每个步骤,需要推荐相应的库或工具,并提供代码示例。例如,几何矫正可以使用OpenCV的霍夫变换或深度学习模型,去噪可以使用OpenCV的传统方法,二值化同样用OpenCV的自适应阈值。 用户可能需要具体的代码示例,比如如何检测边缘、如何做透视变换,或者如何调整光照。此外,可能需要推荐一些专注于文档预处理的库,比如unpaper,或者基于深度学习的工具如DocEnTR。 另外,硬件要求也是一个考虑因素,如果用户需要在移动端或嵌入式设备上运行,可能需要轻量级模型,如TensorFlow Lite版本。如果处理速度是关键,可能需要推荐CPU上运行较快的库,如Kornia结合PyTorch。 最后,给出一个流程示例,帮助用户整合各个步骤,并可能提供一些实际应用的例子,比如结合OCR,说明预处理后的图像如何提升OCR准确率。同时,选型建议表格可以帮助用户根据需求快速选择合适的工具。 需要确保回答结构清晰,分步骤说明,每个步骤有对应的工具、代码示例和适用场景。这样用户能够逐步实施预处理流程,并根据具体情况调整工具和方法。</think>以下是针对**票据图像预处理任务**的详细步骤、工具库推荐及代码示例,涵盖几何矫正、去噪、二值化等关键环节: --- ### **1. 几何矫正(去倾斜/透视变换)** **问题**:票据扫描或拍摄时倾斜或扭曲 **解决方案**: - **传统方法**:使用OpenCV的霍夫变换检测边缘,计算倾斜角并旋转矫正 - **深度学习方法**:DocTr(基于Transformer的文档矫正模型) #### **代码示例(OpenCV边缘检测+透视变换)** ```python import cv2 import numpy as np def deskew(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=3) lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=100, maxLineGap=10) # 计算倾斜角 angles = [np.arctan2(y2-y1, x2-x1) for line in lines for x1,y1,x2,y2 in line] avg_angle = np.degrees(np.median(angles)) # 旋转矫正 (h, w) = image.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, avg_angle, 1.0) rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC) return rotated ``` #### **工具库推荐** - **DocTr**:GitHub地址 [https://github.com/fh2019ustc/DocTr](https://github.com/fh201ustc/DocTr) 支持复杂弯曲文档的端到端矫正,适用于褶皱票据。 - **Scantailor Advanced**:开源桌面工具,适合批量处理 [https://github.com/4lex4/scantailor-advanced](https://github.com/4lex4/scantailor-advanced) --- ### **2. 去噪与光照均衡** **问题**:扫描件存在阴影、反光或噪点 **解决方案**: - **CLAHE(对比度受限自适应直方图均衡化)**:消除光照不均 - **非局部均值去噪(NL-Means)**:保留文字边缘细节 #### **代码示例(OpenCV光照均衡)** ```python def adjust_lighting(image): lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB) l, a, b = cv2.split(lab) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) l_clahe = clahe.apply(l) merged = cv2.merge((l_clahe, a, b)) result = cv2.cvtColor(merged, cv2.COLOR_LAB2BGR) return result # 非局部均值去噪 denoised = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21) ``` #### **工具库推荐** - **Kornia的Adaptive Threshold**:动态调整光照 [https://kornia.readthedocs.io](https://kornia.readthedocs.io) - **Document Image Enhancement Toolkit**:专门针对文档阴影去除 [https://github.com/baudm/DIET](https://github.com/baudm/DIET) --- ### **3. 二值化(黑白化)** **问题**:彩色/灰度图像转为高对比度黑白图像 **解决方案**:自适应阈值法(应对光照不均) #### **代码示例(OpenCV自适应阈值)** ```python gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) binary = cv2.adaptiveThreshold( gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2 ) ``` #### **工具库推荐** - **Sauvola算法**:适用于低质量文档 ```python from skimage.filters import sauvola window_size = 25 thresh = sauvola(gray, window_size) binary = gray > thresh ``` - **DocEnTR(基于Transformer的二值化)**:GitHub地址 [https://github.com/dali92002/DocEnTR](https://github.com/dali92002/DocEnTR) --- ### **4. 文字区域增强** **问题**:模糊或低分辨率文字影响OCR识别 **解决方案**:超分辨率重建 + 锐化 #### **代码示例(使用ESRGAN增强)** ```python # 使用预训练ESRGAN模型 from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.download_util import load_file_from_url model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23) model_path = load_file_from_url(url="https://github.com/xinntao/ESRGAN/releases/download/v1.0/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth") load_net = torch.load(model_path, map_location=torch.device('cpu')) model.load_state_dict(load_net['params'], strict=True) # 运行推理(需完整实现数据预处理) enhanced_image = model(input_tensor) ``` #### **工具库推荐** - **OpenCV锐化滤波**: ```python kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) sharpened = cv2.filter2D(image, -1, kernel) ``` - **Real-ESRGAN**:通用图像超分模型 [https://github.com/xinntao/Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) --- ### **5. 完整流程示例(结合OCR)** ```python import cv2 import pytesseract def invoice_preprocess(image_path): # 1. 读取并矫正 img = cv2.imread(image_path) img = deskew(img) # 2. 去噪与光照均衡 img = adjust_lighting(img) img = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21) # 3. 二值化 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # 4. OCR识别 text = pytesseract.image_to_string(binary, lang='chi_sim+eng') return text print(invoice_preprocess("invoice.jpg")) ``` --- ### **选型建议表** | 任务 | 推荐工具/库 | 优势 | |--------------------|-----------------------|------------------------------| | 快速批量处理 | Scantailor Advanced | 图形界面,自动批量矫正/二值化 | | 深度学习端到端方案 | DocTr + DocEnTR | 处理弯曲/褶皱票据 | | 移动端部署 | OpenCV (Android/iOS) | 轻量级,实时处理 | | 复杂退化修复 | Real-ESRGAN + DeblurGAN-v2 | 联合超分与去模糊 | **硬件适配性**: - CPU环境优先选择OpenCV/Kornia传统算法 - GPU加速可使用ESRGAN、DocTr等深度学习模型 **扩展建议**: - 将预处理流水线封装为API服务(使用FastAPI框架) - 对特定票据类型定制检测模型(YOLOv8定位关键字段区域)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值