【ACM】—蓝桥杯大一暑期集训Day4

本文介绍了几种解决最短路径问题的算法,包括Floyd、Dijkstra和SPFA,提供了C++的代码示例,并分享了不同题目如医院设置、Destroyer等的解题思路。作者强调这些图论问题的挑战性,并鼓励读者多加练习以掌握相关技能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀欢迎来到本文🚀
🍉个人简介:陈童学哦,目前学习C/C++、算法、Python、Java等方向,一个正在慢慢前行的普通人。
🏀系列专栏:陈童学的日记
💡其他专栏:C++STL,感兴趣的小伙伴可以看看。
🎁希望各位→点赞👍 + 收藏⭐️ + 留言📝 ​
⛱️学习应使你快乐!望与诸君共勉!

在这里插入图片描述

A - 医院设置

来源:洛谷P1364 医院设置
算法标签:动态规划,dp、树形数据结构、广度优先搜索,BFS、最短路
在这里插入图片描述
在这里插入图片描述

解题思路

这题是一道最短路问题,先用邻接矩阵建一棵树,然后用Floyd(弗洛伊德)算法求任意两点间的最短路,然后再遍历所有节点看看在哪个节点距离和最小

示例代码

#include<bits/stdc++.h>
using namespace std;
int a[105],g[105][105]; 
int main()
{
	int n,l,r,minn,sum;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
			g[i][j]=0x3f3f3f3f;
	}
	for(int i=1;i<=n;i++)
	{
		g[i][i]=0;
		cin>>a[i]>>l>>r;
		if(l>0)
			g[i][l]=g[l][i]=1;
		if(r>0)
			g[i][r]=g[r][i]=1;
	}
	//Floyd求最短路
	for(int k=1;k<=n;k++)
	{
		for(int i=1;i<=n;i++)
		{
			if(i!=k)
			{
				for(int j=1;j<=n;j++)
				{
					if(i!=j&&k!=j&&g[i][k]+g[k][j]<g[i][j])
						g[i][j]=g[i][k]+g[k][j];
				}
			}
		}
	}
	minn=0x7fffffff;
	for(int i=1;i<=n;i++)
	{
		sum=0;
		for(int j=1;j<=n;j++)
			sum+=g[i][j]*a[j];
		if(sum<minn)
			minn=sum;
	}
	cout<<minn;
}

B - Destroyer

来源:Codeforces A. Destroyer
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

解题思路

统计每个数出现的次数,只需满足a[i]<=a[i-1]即可

示例代码

#include <bits/stdc++.h>
using namespace std;
void solve() 
{
	int n,num; 
	cin>>n;
	int a[105]={0};
	//memset(a,0,sizeof a);
	for(int i = 1 ; i <=n  ; i++)
	{
		cin>>num;
		a[num]++;
	}
	int judge = 1;
	for(int i=1;i<105;i++)
	{
		if(a[i] > a[i-1])
		{
			judge = 0;
			break;
		}
			
	}
	if(judge)
		cout<<"YES\n";
	else
		cout<<"NO\n";
}            
int main() 
{
    int t;
	cin>>t;
    while(t--)
    {
    	solve();
    }
    return 0;
}

C - 单源最短路径(弱化版)

来源:洛谷P3371 【模板】单源最短路径(弱化版)
算法标签:图论、最短路、O2优化
在这里插入图片描述
在这里插入图片描述

解题思路

这题的数据用邻接矩阵的话好像过不了,我不会做(手动流泪),我看有大佬们有用Floyd优化的、Dijkstra+堆优化、SPFA优化等,我这里参考了一位用链式向前星储存图+Dijkstra的大佬的代码。真难啊家人们。

示例代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1000010;
int head[N],cnt;
ll ans[N];
bool visit[N];
int n,m,s;
struct node
{
	int to;
	int nextt;
	int wei;
}edge[N];
void addedge(int x,int y,int z)
{
	edge[++cnt].to=y;
	edge[cnt].wei=z;
	edge[cnt].nextt=head[x];
	head[x]=cnt;
}
int main()
{
	cin>>m>>n>>s;
	for(int i=1;i<=n;i++)
		ans[i]=2147483647;
	ans[s]=0;
	int a,b,c;
	for(int i=1;i<=n;i++)
	{
		cin>>a>>b>>c;
		addedge(a,b,c);
	}
	int position=s;
	while(visit[position]==0)
	{
		ll minn =2147483647;
		visit[position]=1;
		for(int i=head[position];i!=0;i=edge[i].nextt)
		{
			if(!visit[edge[i].to]&&ans[edge[i].to]>ans[position]+edge[i].wei)
				ans[edge[i].to]=ans[position]+edge[i].wei;
		}
		for(int i=1;i<=m;i++)
		{
			if(ans[i]<minn&&visit[i]==0)
			{
				minn=ans[i];
				position=i;
			}
		}
	}
	for(int i=1;i<=m;i++)
		cout<<ans[i]<<" ";
}

D - 某最短路

来源:洛谷B3647 【模板】Floyd 算法
算法标签:最短路

在这里插入图片描述

解题思路

要求任意两点之间的距离,数据也不是很大,这题用Floyd跑一遍就OK了

示例代码

#include<bits/stdc++.h>
using namespace std;
int n,m;
int u,v,w;
int g[105][105];
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		{
			if(i==j)
				g[i][j]=0;
			else
				g[i][j]=1e9;
		}
			
	for(int i=1;i<=m;i++)
	{
		cin>>u>>v>>w;
		g[u][v]=g[v][u]=w;
	}
	for(int k=1;k<=n;k++)
	{
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				if(g[i][j]>g[i][k]+g[k][j])
					g[i][j]=g[i][k]+g[k][j];
			}
		}
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
			cout<<g[i][j]<<" ";
		cout<<endl;
	}
}

E - Sasha and Array Coloring

来源:CodeforcesA. Sasha and Array Coloring
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

解题思路

这题模拟一下,要得到最大值,采用贪心策略,先对数组进行排序,然后每次用末尾数减去首位数,全部相加即可求解

示例代码

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int t;	
	cin>>t;
	while(t--)
	{
		int n;
		cin>>n;
		int a[105],sum=0;
		for(int i=0;i<n;i++)
			cin>>a[i];
		sort(a,a+n);
		int i=0,j=n-1;
		while(i<j)
		{
			sum+=a[j]-a[i];
			i++;
			j--;
		}
		cout<<sum<<endl;
	}
}

总结

Day4的题主要考察最短路径、图论问题,这类题较难。
算法:贪心、Floyd、Dijkstra、SPFA、DFS、BFS、dp
感悟:图论最短路的题比较难,有时难得我头炸裂(哭脸)
总结:对于求最短路的各类算法还不是太熟练,还需多加练习加以掌握

评论 51
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈童学哦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值