- 博客(720)
- 收藏
- 关注

原创 数据分析:转录组差异分析方法总结(DESeq2+limma+edgeR+t-test/wilcox-test)
本文详细探讨了转录组数据分析中常用的差异分析R包(如DESeq2、limma和edgeR)及其与t-test/wilcox-rank-sum test的结合使用。文章首先介绍了如何下载和导入测试数据,并批量安装所需的R包。接着,讨论了基因表达count矩阵的标准化方法(如FPKM、TPM等),以及如何通过PCA、tSNE、UMAP和热图等方法进行基因整体水平分布的可视化。随后,文章分别展示了DESeq2、limma和edgeR的差异分析实现及结果解析,并探讨了结合t-test或wilcox-rank-sum
2023-07-17 11:01:18
23349
2
原创 R语言机器学习算法实战系列(二十六)基于tidymodels的XGBoost二分类器全流程实战
本教程面向希望掌握 **R 中机器学习建模流程** 的初学者与进阶用户,提供了一个完整的实战案例。通过对 PimaIndiansDiabetes 数据集的分析,学习者将掌握从数据探索、预处理、模型训练、参数调优到模型解释的全过程。
2025-06-26 09:43:09
435
原创 【数据分析】分段逻辑回归示例分析(模拟数据)
提供了一个完整的分析流程,用于探索和可视化变量`BPFI`与二元结果`outcome`之间的非线性关系。通过模拟数据,构建逻辑回归和分段回归模型,计算预测值和统计值,并最终通过图形展示结果,脚本清晰地展示了`BPFI`在不同区间对`outcome`的影响差异。这种分析方法特别适用于研究具有阈值效应的变量关系,能够为医学、生物学等领域提供有价值的见解。
2025-06-25 08:47:47
187
原创 【科研绘图系列】R语言绘制论文组合图(multiple plots)
通过处理和可视化病毒中和实验和SPR实验数据,提供了一种系统的方法来分析和展示不同突变组合的中和效价(IC50)和抗体亲和力(KD)分布及其统计信息。代码利用`ggplot2`和`ComplexHeatmap`生成了多种图形,包括热图、富集条形图、拟合曲线图、EC50值条形图和SPR传感器图,以直观展示数据的分布和变化。通过计算几何平均值、几何标准差和几何置信区间,并添加点图和误差条,代码成功地突出了关键信息,使得读者能够清晰地理解不同突变组合的中和特性和抗体亲和力。
2025-06-24 01:00:00
35
原创 【科研绘图系列】R语言绘制论文组合图(multiple plots)
通过处理和可视化小鼠实验数据,提供了一种系统的方法来分析和展示不同实验组的小鼠在不同时间点的抗体浓度和中和效价(ID50)分布及其统计信息。代码利用`ggplot2`生成了多种图形,包括条形图、拟合曲线图、中和效价条形图、中和效价折线图和相关性图,以直观展示数据的分布和变化。通过计算几何平均值、几何标准差和几何置信区间,并添加点图和误差条,代码成功地突出了关键信息,使得读者能够清晰地理解不同实验组的抗体反应和中和特性。
2025-06-24 00:00:00
55
原创 【工具】Eclipse:一个用于对两个或多个非靶向液相色谱-质谱代谢组学数据集进行比对的 Python 软件包
【工具】Eclipse:一个用于对两个或多个非靶向液相色谱-质谱代谢组学数据集进行比对的 Python 软件包
2025-06-23 08:31:19
960
原创 【科研绘图系列】R语言绘制论文组合图形(multiple plots)
通过处理和可视化病毒突变和中和抗体效价(IC50)数据,提供了一种系统的方法来分析和展示不同突变位点和突变组合的中和特性。代码利用`ggplot2`、`ComplexHeatmap`等包生成了多种图形,包括折线图、热图、条形图和富集曲线图,以直观展示突变位点的逃逸分数、IC50值分布及其统计信息。通过限制IC50值的范围、筛选特定突变组合、计算统计显著性,并添加标签和置信区间,代码成功地突出了关键信息,使得读者能够清晰地理解不同突变组合的中和特性。
2025-06-23 01:00:00
154
原创 【科研绘图系列】R语言绘制论文组合图形(multiple plots)
通过处理和可视化病毒中和实验数据,提供了一种系统的方法来分析和展示不同病毒变体的中和抗体效价(IC50)分布。代码利用`ggplot2`生成了多种图形,包括点图、箱线图、密度分布图和散点图,以直观展示IC50值的分布和统计信息。通过限制IC50值的范围、筛选特定变体、计算中和比例,并添加阈值标记和文本标签,代码成功地突出了关键信息,使得读者能够清晰地理解不同变体的中和特性。
2025-06-23 00:00:00
420
原创 【工具】DiSC:一种用于快速分析个体水平单细胞 RNA 测序数据差异表达的统计工具
【工具】DiSC:一种用于快速分析个体水平单细胞 RNA 测序数据差异表达的统计工具
2025-06-22 10:50:56
804
原创 【科研绘图系列】R语言绘制circos图形(circos plot)
通过模拟数据生成了一个复杂的可视化图表,结合了环形图和条形图/箱线图,展示了受试者的年龄、BMI、性别、种族和IRIS状态。通过精心设计的数据处理和图形样式定义,代码成功地将受试者的关键信息以一种清晰、直观的方式呈现出来。环形图和条形图/箱线图的结合使用,使得读者能够从不同的角度理解数据。
2025-06-21 11:47:36
952
原创 【科研绘图系列】R语言绘制实验设计图(复现系列)
通过模拟数据生成了一个复杂的患者治疗过程可视化图表。它展示了每个患者的治疗阶段(诱导治疗、中断治疗和维持治疗),以及关键事件(如CR、PR、SD、PD、DEAD、Drop-out和Ongoing)。通过精心设计的数据处理和图形样式定义,代码成功地将患者的治疗历程以一种清晰、直观的方式呈现出来。图表中使用了不同的颜色、形状和线型来区分不同的事件和状态,使得读者能够轻松地理解每个患者的治疗过程和关键事件。这种可视化的图表对于医学研究和临床实践中的治疗效果评估具有重要意义。
2025-06-21 11:04:04
71
原创 【数据分析】基于梯度提升的基因调控网络预测工具
pgBoost的贡献在于提供了一个强大的工具,帮助研究人员从大量的候选调控链接中筛选出最有可能的调控关系,从而推动基因调控网络的研究。通过整合多种数据源和使用先进的预测算法,pgBoost能够为基因调控网络的研究提供有力支持,推动相关领域的研究进展。
2025-06-20 01:00:00
326
原创 【科研绘图系列】python绘制论文组图(multiple plots)
这段代码提供了一个完整的工具集,用于分析和展示气候变化对健康和经济的影响。它通过一系列函数实现了从数据加载、处理到图表生成的全过程。代码的主要功能包括:1. **数据加载与处理**:从CSV文件加载历史数据和SSP情景数据,并进行必要的预处理。2. **绘制国家比较图**:生成国家间的比较图,展示不同情景下的健康和经济影响。3. **绘制时间序列图**:生成时间序列图,展示不同情景下的健康和经济指标随时间的变化。4. **生成表格**:计算并生成不同情景下的健康和经济指标的表格,便于比较不同情景下
2025-06-20 00:30:00
28
原创 【科研绘图系列】R语言绘制论文地图(map plot)
这段代码提供了一个完整的工具集,用于生成地理分布图和根系分布图。它通过一系列函数实现了从数据加载、处理到图表生成的全过程
2025-06-20 00:30:00
117
原创 【科研绘图系列】python绘制论文组合图形(multiple plots)
这段代码提供了一个完整的工具集,用于分析和展示不同国家在不同排放情景下的健康和经济影响。它通过一系列函数实现了从数据加载、处理到图表生成的全过程。
2025-06-19 01:00:00
33
原创 【科研绘图系列】python绘制地图和柱状图(map & bar plot)
这段代码通过Python的Pandas、Numpy、Matplotlib、Geopandas和Seaborn库,对全球OSA的分布和流行情况进行了可视化分析。代码分为两个主要部分:绘制世界地图展示OSA分布情况,以及绘制柱状图展示不同国家的OSA流行率。
2025-06-19 00:45:00
148
原创 【数据工程实战】IntelliGenesR用于生物标志物发现的可解释机器学习分析流程
IntelliGenesR是一个新颖的机器学习(ML)流程,旨在通过多组学数据(包括全基因组测序、RNA-seq、临床和人口统计学信息)发现与疾病预测相关的生物标志物,并进行高精度的疾病预测。该流程结合了传统的统计方法和先进的机器学习算法,通过多组学数据的整合分析,发现新的生物标志物并预测疾病。该流程不仅能够提高疾病预测的准确性,还能为个性化医疗提供支持,帮助发现新的治疗靶点和干预措施。
2025-06-18 08:07:18
223
原创 【数据工程实战】Amplicon sequence扩增子下游数据分析流程
通过 R 语言和相关生物信息学工具,对微生物组数据进行详细的分析。它涵盖了从原始序列数据到微生物群落结构和功能的全面分析,旨在帮助研究人员理解微生物群落的组成、多样性和动态变化。教材特别关注了如何通过微生物组数据揭示微生物群落的生态学特征和潜在功能,以及如何通过统计分析和可视化方法展示这些特征。
2025-06-18 08:07:06
137
原创 【科研绘图系列】python绘制论文图(plot)
这段代码通过Python的Pandas、Numpy和Matplotlib库,对气温数据和健康风险数据进行了可视化分析。代码的主要目的是通过图表展示全球变暖对气温的影响,以及气温变化对健康风险(特别是睡眠呼吸暂停综合征,OSA)的影响。
2025-06-18 00:45:00
25
原创 【科研绘图系列】python绘制论文图(plots)
这段代码通过Python编程语言,结合Pandas、Matplotlib和Numpy库,对法国2023年与历史时期气温变化对健康和经济的影响进行了全面的分析和建模。代码首先读取并筛选数据,然后绘制了RR曲线和气温对比图,直观地展示了气温变化对健康风险的影响。
2025-06-18 00:15:00
44
原创 【数据分析】广义可加模型(Generalized Additive Models, GAM)分析数据中非线性关系
这些代码的最终作用是为每个研究拟合一个GAM,以估计血清阳性率和GMT随时间差异的变化。通过这些模型,研究人员可以评估免疫反应随时间的维持情况,这对于理解疫苗效力的持久性或自然感染后的免疫持久性至关重要。结果数据框提供了每个研究的估计值和95%置信区间,这些信息可以用来绘制图表,直观展示不同研究中免疫反应随时间的变化趋势。通过比较不同研究组的结果,研究人员可以识别出哪些因素可能影响免疫反应的持久性,这对于设计更有效的疫苗接种策略和改进疾病控制措施具有重要意义。
2025-06-17 01:00:00
127
原创 【科研绘图系列】R语言绘制论文组图系列(multiple plots)
本文档通过一系列数据处理和可视化步骤,详细分析了流感病毒(H3N2和H1N1)的血凝抑制(HI)滴度数据。通过加载和预处理数据,定义了一系列函数来处理和可视化数据。主要图表包括HI滴度随时间的变化趋势、氨基酸替换数量与HI滴度的关系,以及不同研究中HI滴度的血清阳性率和几何平均值的变化。此外,还使用了广义可加模型(GAM)来拟合HI滴度随时间的变化趋势,揭示了其非线性关系。这些分析结果为理解流感病毒的交叉反应性和免疫反应提供了重要的科学依据。
2025-06-17 00:15:00
54
原创 【科研绘图系列】R语言绘制多组柱状图(bar plot)
这段代码的目的是对雄激素处理组(Androgens)在0 nM浓度下的数据进行统计分析,主要计算了每个雄激素组的均值(Mean)和标准差(SD),并对这些数据进行了可视化展示。
2025-06-16 00:30:00
151
原创 【科研绘图系列】R语言绘制多组带点图的柱状图(bar plot)
本教程演示了使用R语言对细胞增殖数据进行统计分析及可视化的完整流程。通过加载ggplot2、dplyr等R包,对VCaP细胞系在不同雄激素(AD,T,epiT,11OHT)和时间点(d2,d4,d8)处理的增殖数据进行分析。关键步骤包括数据预处理(分组、子集提取)、可视化(柱状图添加误差条和散点)及统计检验。结果展示不同雄激素处理对细胞增殖的显著影响,并通过自定义主题优化图表呈现。所有代码和示例数据可供复现,适用于各类细胞实验数据的分析需求。
2025-06-16 00:15:00
40
原创 【文献分享】Resolving spatial subclonal提供了数据和代码
【文献分享】Resolving spatial subclonal提供了数据和代码
2025-06-14 09:31:53
816
原创 【工具】MINGLE:一种基于互信息的可解释框架,用于对单细胞染色质可及性数据中的细胞类型进行自动标注
一种基于互信息的可解释框架,用于对单细胞染色质可及性数据中的细胞类型进行自动标注
2025-06-12 08:23:51
776
原创 【数据分析】RNA-seq 数据分析:差异表达、火山图与功能富集分析
RNA-seq 是一种基于高通量测序技术的基因表达分析方法,能够全面、准确地定量转录组中的基因表达水平。差异表达分析是 RNA-seq 数据分析的关键步骤,通过比较不同实验条件下的基因表达量,识别出显著差异表达的基因,从而揭示基因表达的调控机制。火山图是一种直观展示差异表达基因的图表,以基因的对数倍变化值和调整后的 p 值为坐标轴,清晰地呈现基因的表达变化趋势和显著性。功能富集分析则是对差异表达基因进行生物学功能注释和分类,通过富集分析确定这些基因所参与的生物学过程、分子功能和细胞组分,为理解基因表达变化的
2025-06-12 00:15:00
660
原创 【科研绘图系列】R语言绘制论文组合图(multiple plot)
这段代码是用于分析和可视化博茨瓦纳婴儿微生物组研究(Botswana Infant Microbiome Study)中特定ASV(Amplicon Sequence Variant)与细菌定植之间的关系的R脚本。代码的主要目的是生成论文中的补充图3(Supplementary Figure 3),并保存相关的数据和图表。
2025-06-11 01:00:00
56
原创 【科研绘图系列】R语言绘制论文组合桑基图(multiple sankey plot)
这段代码是用于分析和可视化博茨瓦纳婴儿微生物组研究(Botswana Infant Microbiome Study)中四种细菌病原体(H. influenzae、M. catarrhalis、S. aureus、S. pneumoniae)定植情况的R脚本。代码的主要目的是生成论文中的补充图2(Supplementary Figure 2),包括四个子图(a、b、c、d),并保存相关的数据和图表。
2025-06-11 00:30:00
147
原创 【科研绘图系列】R语言绘制论文组图(multiple plots)
这段代码是用于分析和可视化博茨瓦纳婴儿微生物组研究(Botswana Infant Microbiome Study)中呼吸道病毒和细菌定植数据的R脚本。代码的主要目的是生成论文中的补充图1(Supplementary Figure 1),包括六个子图(a、b、c、d、e、f),并保存相关的数据和图表。
2025-06-10 00:45:00
65
原创 【科研绘图系列】R语言绘制论文组图(multiple plots)
这段代码是用于分析和可视化博茨瓦纳婴儿微生物组研究(Botswana Infant Microbiome Study)中呼吸道病毒和细菌定植数据的R脚本。代码的主要目的是生成论文中的Figure 4,包括三个子图(a、b、c),并保存相关的数据和图表。
2025-06-10 00:30:00
54
原创 【科研绘图系列】R语言绘制论文组图(multiple plots)
这段代码是用于分析和可视化博茨瓦纳婴儿微生物组研究(Botswana Infant Microbiome Study)中呼吸道病毒和细菌定植数据的R脚本。代码的主要目的是生成论文中的Figure 3,包括五个子图(a、b、c、d、e),并保存相关的数据和图表。
2025-06-09 00:30:00
137
原创 【科研绘图系列】R语言绘制论文组图(multiple plots)
这段R代码是一个完整的分析和可视化流程,用于处理博茨瓦纳婴儿微生物组研究中的呼吸道病毒和细菌定植数据。代码的主要功能包括数据加载、预处理、图表生成和保存。通过精心设计的颜色方案和布局,生成的图表清晰地展示了不同病原体之间的关系和定植密度。最终的Figure 2由三个子图组成,分别展示了呼吸道病毒感染对细菌定植的影响、肺炎链球菌的定植密度以及四种细菌病原体的共定植情况。
2025-06-09 00:15:00
124
原创 【科研绘图系列】R语言绘制论文组图(multiple plots)
这段R代码是一个完整的分析和可视化流程,用于处理博茨瓦纳婴儿微生物组研究中的呼吸道病毒和细菌数据。代码的主要功能包括数据加载、预处理、图表生成和保存。通过精心设计的颜色方案和布局,生成的图表清晰地展示了不同检测方法的样本数量、呼吸道病毒的检测比例以及细菌病原体的定植率。最终的Figure 1由三个子图组成,分别展示了样本数量、病毒检测比例和细菌定植率,为研究提供了直观的数据支持。此外,代码还保存了相关的数据文件,便于后续的分析和验证。
2025-06-07 12:25:18
288
原创 【数据分析】探索婴儿年龄变化对微生物群落(呼吸道病毒和细菌病原体)结构的影响
本教程基于博茨瓦纳婴儿微生物组研究项目,详细介绍了如何使用 R 语言进行呼吸道病毒与细菌病原体的分析。该研究旨在探索婴儿鼻咽部微生物群落结构随年龄的变化、呼吸道病毒感染对微生物群落的影响,以及微生物特征对病原体定植的预测能力。通过一系列复杂的数据处理、统计建模和机器学习方法,本教程将逐步展示如何从原始数据中提取有价值的信息,揭示微生物组与呼吸道健康之间的潜在联系。教程内容涵盖了数据预处理、混合效应逻辑回归模型、随机森林模型以及 Maaslin2 分析等多个方面,旨在为微生物组研究者提供一个完整的分析流程示例
2025-06-07 11:08:05
311
原创 【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
IntelliGenesR:基于多组学数据的可解释疾病预测工具 IntelliGenesR是IntelliGenes流程的R实现,通过整合转录组与临床数据,进行疾病预测和生物标志物发现。其核心流程包括: 特征选择:使用Pearson、卡方、ANOVA和递归特征消除(RFE)筛选差异基因。 模型训练:支持随机森林、SVM等7种分类器,输出性能指标(如ROC曲线、F1分数)。 I-Genes评分:结合SHAP值和HHI指数量化基因重要性,提供可解释的生物标志物排名。
2025-06-06 14:17:18
1104
原创 【数据分析】基于adonis2与pairwise.adonis2的群组差异分析教程
本教程介绍基于距离矩阵的群落多样性分析方法,重点应用adonis2和pairwise.adonis2进行群组差异检验。通过导入距离矩阵和元数据,预处理后执行全局(adonis2)和成对(pairwise.adonis2)PERMANOVA分析,评估群组间差异显著性。adonis2提供整体群组效应,而pairwise.adonis2进一步识别具体差异群组对,并支持p值校正(如FDR)。分析结果以表格输出(Adonis-ALL.xls和Adonis-Pairwise.xls),适用于生态学、微生物组等
2025-06-05 09:02:23
451
原创 【科研绘图系列】R语言绘制和弦图(Chord diagram plot)
本文基于R语言构建了代谢物与环境元素相关性分析及和弦图可视化流程。通过psych和circlize等包,计算Spearman相关性(FDR校正p值),筛选显著关系(Padj<0.05)并提取前50个高相关组合。数据预处理包括去除零值行和转置矩阵。和弦图使用自定义颜色方案(代谢物:#65bd71,环境元素:#1d7811),按相关系数方向(正/负)染色链接,并优化布局与注释。最终输出PDF格式可视化结果,清晰展示跨数据集复杂关联。代码与示例数据已公开,适用于生物、生态等领域的关系网络分析。
2025-06-05 08:48:39
308
原创 【科研绘图系列】R语言绘制论文组合图(muitple plots)
这篇文章提供了一套完整的跨平台和跨仪器的蛋白质组学数据比较分析流程,涵盖了数据预处理、特征选择、模型训练和结果可视化。通过具体的代码示例和图形展示,读者可以清晰地了解如何使用R语言进行这些分析。文章中的图形设计精美,通过自定义颜色、主题和标签,使图形更加直观和易于理解。此外,文章还提供了数据下载链接和提取码,方便读者获取数据并复现结果。总体而言,这篇文章不仅展示了R语言在数据分析中的强大功能,还为科研人员提供了一个实用的分析模板。
2025-06-03 00:30:00
60
### 【生物信息学】基于R语言的STAMP图绘制:宏基因组数据分析与可视化
2025-04-20
### 数据科学R语言基础图形合集:科研绘图指南与实现
2025-04-20
科研绘图R语言ggpubr包在数据可视化中的应用:多种图表类型与统计分析整合
2025-04-20
科研绘图基于ggplot2的箱线图绘制:带有出现率百分比的多组别数据分布比较及可视化
2025-04-20
科研绘图领域:tidyplots包替代ggplot2实现高效美观的论文图表制作
2025-03-25
科研绘图系列:R与Python在数据可视化中的应用及代码比较
2025-03-25
在R语言中,安装R包是数据分析过程中不可或缺的一部分 当你需要执行特定的统计测试、可视化或其他任务时,你可能会发现相应的功能已经被封装在一个或多个R包中
2025-01-23
数据分析:转录组差异分析总结(DESeq2+limma+edgeR+t-test/wilcox-test
2024-11-19
科研绘图系列:R语言雨云图展示更多数据分布信息
2024-11-18
科研绘图系列:箱线图加百分比点图展示组间差异
2024-11-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人