自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 深度孪生自注意力网络:小样本条件下的多维时间序列分类

在本文中,基于聚类的降采样是面向数据不均衡的数据重采样方法,而深度孪生自注意力网络是一种面向小样本条件下的多维时间序列数据的特征学习和分类方法。由于小样本条件下的多维时间序列的分类问题是无处不在的,深度孪生自注意力网络,或者说这种“孪生架构”+“注意力机制”的思路,或许有着广阔的拓展空间和应用范围。本文选取航空发动机的真实数据验证所提模型的有效性,实验结果表明深度孪生自注意力网络对于小样本条件下的多维时间序列的分类问题独具优势并且深具潜力。

2022-10-14 10:23:03 1829 3

转载 深度残差收缩网络

故障诊断经典论文:深度残差收缩网络Residual深度残差网络ResNet获得了2016年IEEE Conferenceon Computer Vision and Pattern Recognition的最佳论文奖,目前在谷歌学术的引用量已高达38295次。深度残差收缩网络是深度残差网络的一种的改进版本,其实是深度残差网络、注意力机制和软阈值函数的集成。在一定程度上,深度残差收缩网络的工...

2020-03-15 11:33:05 721

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除