技术背景介绍
在当前AI技术蓬勃发展的背景下,数据的存储和检索显得尤为重要。Activeloop Deep Lake是一种多模态向量存储解决方案,支持嵌入和元数据(如文本、Json、图像、音频、视频等)的存储。它适用于本地、云端或Activeloop存储,通过嵌入以及其属性进行混合搜索。该解决方案是一个无服务器的数据湖,具备版本控制、查询引擎和深度学习框架的流媒体数据加载器。
核心原理解析
Deep Lake的核心在于其向量存储能力,它不仅能够存储任何类型的数据,还能通过LangChain等框架进行集成,实现复杂的混合搜索。此外,Deep Lake支持在其托管的数据库中运行的张量数据库(Tensor DB),为用户提供高性能的查询和数据管理。
代码实现演示
下面我们将通过一个实际的代码示例展示如何使用Activeloop Deep Lake。我们将创建一个本地的数据集,进行相似性搜索,并使用LangChain进行问答检索。
# 安装所需的Python库
%pip install --upgrade --quiet langchain-openai langchain-community 'deeplake[enterprise]' tiktoken
# 导入必要的模块
import os
import random
from langchain_community.vectorstores import DeepLake
from langchain_openai import OpenAIEmbeddings
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplit