R语言中的K-S检验及应用示例
K-S检验(Kolmogorov-Smirnov test)是一种常用的非参数假设检验方法,主要用于检验两个样本是否来自同一分布或者一个样本是否来自某个特定分布。在R语言中,我们可以使用ks.test()函数来进行K-S检验。
首先,我们需要明确K-S检验的原假设和备择假设。K-S检验的原假设是两个样本(或一个样本与某个特定分布)来自同一分布,备择假设则是两个样本(或一个样本与某个特定分布)来自不同的分布。
接下来,让我们来看一个示例。假设我们有两个数据集:data1和data2,我们想要检验它们是否来自同一分布。
# 生成两个样本数据
set.seed(0)
data1 <- rnorm(100)
data2 <- rnorm(150)
# 进行K-S检验
ks_result <- ks.test(data1, data2)
在这个示例中,我们使用了set.seed(0)来设置随机数种子,以保证结果的可复现性。然后,我们生成了两个样本数据data1和data2,分别包含100个和150个服从正态分布的随机数。
接着,我们使用ks.test()函数进行K-S检验,并将结果保存在ks_result变量中。ks.test()函数会返回一个包含检验结果的K-S检验对象,