多任务-进程multiprocessing

本文详细介绍了Python的multiprocessing模块,包括进程创建、PID获取、参数传递、进程间通信(Queue使用)、进程池Pool的运用以及实际的文件夹复制多进程示例,展示了如何在Python中高效地进行多进程编程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.进程的创建;两个while一起执行
multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象,这个对象可以理解为是一个独立的进程,可以执行另外的事情
说明:创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动

import time
from multiprocessing import Process


def run_proc():
    while True:
        print("……2……")
        time.sleep(1)


if __name__ == '__main__':
    p = Process(target=run_proc)
    p.start()
    while True:
        print("……1……")
        time.sleep(1)

2.进程PID

from multiprocessing import Process
import os


def run_proc():
    """子进程要执行的代码"""
    print('子进程运行中,pid=%d...' % os.getpid())  # os.getpid获取当前进程的进程号
    print('子进程将要结束...')


if __name__ == '__main__':
    print('父进程pid: %d' % os.getpid())  # os.getpid获取当前进程的进程号
    p = Process(target=run_proc)
    p.start()

3.Process语法结构如下

Process([group [, target [, name [, args [, kwargs]]]]])
target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码
args:给target指定的函数传递的参数,以元组的方式传递
kwargs:给target指定的函数传递命名参数
name:给进程设定一个名字,可以不设定
group:指定进程组,大多数情况下用不到


Process创建的实例对象的常用方法:
start():启动子进程实例(创建子进程)
is_alive():判断进程子进程是否还在活着
join([timeout]):是否等待子进程执行结束,或等待多少秒
terminate():不管任务是否完成,立即终止子进程


Process创建的实例对象的常用属性:
name:当前进程的别名,默认为Process-N,N为从1开始递增的整数
pid:当前进程的pid(进程号)

4.给子进程指定的函数传递参数

from multiprocessing import Process
import os
from time import sleep


def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        sleep(0.2)


if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m": 20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()

5.进程间不同享全局变量

from multiprocessing import Process
import os
import time

nums = [11, 22]


def work1():
    """子进程要执行的代码"""
    print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
    for i in range(3):
        nums.append(i)
        time.sleep(1)
        print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))


def work2():
    """子进程要执行的代码"""
    print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))


if __name__ == '__main__':
    p1 = Process(target=work1)
    p1.start()
    p1.join()

    p2 = Process(target=work2)
    p2.start()

运行结果:
in process1 pid=1636 ,nums=[11, 22]
in process1 pid=1636 ,nums=[11, 22, 0]
in process1 pid=1636 ,nums=[11, 22, 0, 1]
in process1 pid=1636 ,nums=[11, 22, 0, 1, 2]
in process2 pid=13828 ,nums=[11, 22]

6.进程间通信-Queue的使用
可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:

from multiprocessing import Queue

q = Queue(3)    # 初始化一个Queue对象,最多可接收3条put消息
q.put("消息1")
q.put("消息2")
print(q.full())  # False
q.put("消息3")
print(q.full())     # True

# 因为消息队列已满,下面的try都会抛出异常;第一个Try会等待2s后抛出异常;第二个Try会立刻抛出异常
try:
    q.put("消息4", True, 2)
except:
    print("消息队列已满,现有消息数量:%s" % q.qsize())

try:
    q.put_nowait("消息4")
except:
    print("消息队列已满,现有消息数量:%s" % q.qsize())

# 推荐的方式;先判断消息队列是否已满,再读取
if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

> 说明:

初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);
Queue.qsize():返回当前队列包含的消息数量;
Queue.empty():如果队列为空,返回True,反之False ;
Queue.full():如果队列满了,返回True,反之False;
Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;

2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
Queue.get_nowait():相当Queue.get(False); Queue.put(item,[block[,
timeout]]):将item消息写入队列,block默认值为True;

3)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;

4)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;Queue.put_nowait(item):相当Queue.put(item,
False);

7.Queue的实例
我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

import time
import random
from multiprocessing import Process, Queue

def write(q):
    for value in ['A', 'B', 'C']:
        print("Put %s to queue……" % value)
        q.put(value)
        time.sleep(random.random())


def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print("Get %s from queue." % value)
            time.sleep(random.random())
        else:
            break


if __name__ == '__main__':
    # 父进程创建Queue,并传给各个子进程
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))

    pw.start()      # 启动子进程pw,写入
    pw.join()       # 等待pw结束

    pr.start()      # 启动子进程pr,读取
    pr.join()       # 等待pr结束

    # pr进程这里是死循环,无法等待其结果,只能强行终止
    print("")
    print("所有数据都写入并且读完")

8.进程池Pool

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

import os
import time
import random
from multiprocessing import Pool


def worker(msg):
    t_start = time.time()
    print("%s 开始执行,进程号为%d" % (msg, os.getpid()))

    time.sleep(random.random()*2)
    t_stop = time.time()
    print(msg, "执行完毕,耗时%0.2f" % (t_stop-t_start))

if __name__ == '__main__':

    po = Pool(3)
    for i in range(0, 10):
        po.apply_async(worker, (i,))

    print("……start……")
    po.close()
    po.join()
    print("……end……")

multiprocessing.Pool常用函数解析:
apply_async(func[, args[, kwds]]):使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
close():关闭Pool,使其不再接受新的任务; terminate():不管任务是否完成,立即终止;
join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;

9.进程池中的Queue
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:
RuntimeError: Queue objects should only be shared between processes through inheritance.
下面的实例演示了进程池中的进程如何通信:

# 修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random

def reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))

def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "itcast":
        q.put(i)

if __name__=="__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())

10.文件夹copy器(多进程版)

import multiprocessing
import os
import time
import random


def copy_file(queue, file_name, source_folder_name,  dest_folder_name):
    """copy文件到指定的路径"""
    f_read = open(source_folder_name + "/" + file_name, "rb")
    f_write = open(dest_folder_name + "/" + file_name, "wb")
    while True:
        time.sleep(random.random())
        content = f_read.read(1024)
        if content:
            f_write.write(content)
        else:
            break
    f_read.close()
    f_write.close()

    # 发送已经拷贝完毕的文件名字
    queue.put(file_name)


def main():
    # 获取要复制的文件夹
    source_folder_name = input("请输入要复制文件夹名字:")

    # 整理目标文件夹
    dest_folder_name = source_folder_name + "[副本]"

    # 创建目标文件夹
    try:
        os.mkdir(dest_folder_name)
    except:
        pass  # 如果文件夹已经存在,那么创建会失败

    # 获取这个文件夹中所有的普通文件名
    file_names = os.listdir(source_folder_name)

    # 创建Queue
    queue = multiprocessing.Manager().Queue()

    # 创建进程池
    pool = multiprocessing.Pool(3)

    for file_name in file_names:
        # 向进程池中添加任务
        pool.apply_async(copy_file, args=(queue, file_name, source_folder_name, dest_folder_name))

    # 主进程显示进度
    pool.close()

    all_file_num = len(file_names)
    while True:
        file_name = queue.get()
        if file_name in file_names:
            file_names.remove(file_name)

        copy_rate = (all_file_num-len(file_names))*100/all_file_num
        print("\r%.2f...(%s)" % (copy_rate, file_name) + " "*50, end="")
        if copy_rate >= 100:
            break
    print()


if __name__ == "__main__":
    main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

As。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值