[Codeforces] number theory (R1200) Part.4

本文概述了五道编程题目的解题思路,涉及数论、整数运算、素数判断、分解因子和最优解搜索。题目涵盖了加法、因子分解、坐标移动操作及特殊数对的求解技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[Codeforces] number theory (R1200) Part.4

题单:https://codeforces.com/problemset/page/6?tags=number%20theory,0-1200

787A. The Monster

原题指路:https://codeforces.com/problemset/problem/787/A

题意

给定四个整数a,b,c,d  (1≤a,b,c,d≤100)a,b,c,d\ \ (1\leq a,b,c,d\leq 100)a,b,c,d  (1a,b,c,d100),求序列{b,b+a,b+2a,⋯ }\{b,b+a,b+2a,\cdots\}{b,b+a,b+2a,}{d,d+c,d+2c,⋯ }\{d,d+c,d+2c,\cdots\}{d,d+c,d+2c,}中最早出现的相等项,若不存在,输出−1-11.

思路

cccaaa的结果与加aaaccc的结果相同,故有解ax+b=cy+dax+b=cy+dax+b=cy+d时,x,y≤max⁡{a,b,c,d}≤100x,y\leq \max\{a,b,c,d\}\leq 100x,ymax{a,b,c,d}100,枚举即可.

代码

void solve() {
	int a, b, c, d; cin >> a >> b >> c >> d;

	for (int i = 0; i <= 100; i++) {
		int cur = b + i * a;
		if (cur - d >= 0 && (cur - d) % c == 0) {
			cout << cur;
			return;
		}
	}
	cout << -1;
}

int main() {
	solve();
}


797A. k-Factorization

原题指路:https://codeforces.com/problemset/problem/797/A

题意

给定一个整数n  (2≤n≤1e5)n\ \ (2\leq n\leq 1\mathrm{e}5)n  (2n1e5),将其分解为k  (1≤k≤20)k\ \ (1\leq k\leq 20)k  (1k20)>1>1>1的整数之积.若有解,输出任一组解;否则输出−1-11.

思路

nnn素因数分解,结果存在一个vector中.

①若vector的元素个数<k<k<k,无解.

②若vector的元素个数=k=k=k,输出集合中的元素即可.

③若vector的元素个数>k>k>k,合并若干个因数直至集合的元素个数=k=k=k.

代码

void solve() {
	int n, k; cin >> n >> k;

	vi ans;
	for (int i = 2; i <= n / i; i++) {
		if (n % i == 0) {
			while (n % i == 0) {
				ans.push_back(i);
				n /= i;
			}
		}
	}
	if (n > 1) ans.push_back(n);

	if (ans.size() < k) cout << -1;
	else if (ans.size() == k)
		for (auto i : ans) cout << i << ' ';
	else {
		while (ans.size() > k) {
			int a = ans.back(); ans.pop_back();
			int b = ans.back(); ans.pop_back();
			ans.push_back(a * b);
		}

		for (auto i : ans) cout << i << ' ';
	}
}

int main() {
	solve();
}


817A. Treasure Hunt

原题指路:https://codeforces.com/problemset/problem/817/A

题意

给定两整数x,yx,yx,y.现有四种操作:①(a,b)→(a+x,b+y)(a,b)\rightarrow(a+x,b+y)(a,b)(a+x,b+y);②(a,b)→(a+x,b−y)(a,b)\rightarrow(a+x,b-y)(a,b)(a+x,by);③(a,b)→(a−x,b+y)(a,b)\rightarrow(a-x,b+y)(a,b)(ax,b+y);④(a,b)→(a−x,b−y)(a,b)\rightarrow(a-x,b-y)(a,b)(ax,by).问是否能从点(x1,y1)(x_1,y_1)(x1,y1)经过若干次操作到达点(x2,y2)(x_2,y_2)(x2,y2),若能则输出"YES";否则输出"NO".

第一行输入四个整数x1,y1,x2,y2  (−1e5≤x1,y1,x2,y2≤1e5)x_1,y_1,x_2,y_2\ \ (-1\mathrm{e}5\leq x_1,y_1,x_2,y_2\leq 1\mathrm{e}5)x1,y1,x2,y2  (1e5x1,y1,x2,y21e5).第二行输入两个整数x,y  (1≤x,y≤1e5)x,y\ \ (1\leq x,y\leq 1\mathrm{e}5)x,y  (1x,y1e5).

思路

显然有解的必要条件是:∣x1−x2∣ mod x=0,∣y1−y2∣ mod y=0|x_1-x_2|\ \mathrm{mod}\ x=0,|y_1-y_2|\ \mathrm{mod}\ y=0x1x2 mod x=0,y1y2 mod y=0.

下面考察能否达到(x1,y1)=(x2,y2)(x_1,y_1)=(x_2,y_2)(x1,y1)=(x2,y2).设cntx=∣x1−x2∣x,cnty=∣y1−y2∣ycnt_x=\dfrac{|x_1-x_2|}{x},cnt_y=\dfrac{|y_1-y_2|}{y}cntx=xx1x2,cnty=yy1y2.注意到每个操作都会同时使得cntxcnt_xcntxcnty±1cnt_y\pm 1cnty±1,故有解的充要条件是:cntxcnt_xcntxcntycnt_ycnty的奇偶性相同.

代码

void solve() {
	int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2;
	int x, y; cin >> x >> y;

	if ((x1 - x2) % x || (y1 - y2) % y) cout << "NO";
	else {
		int cntx = abs(x1 - x2) / x, cnty = abs(y1 - y2) / y;
		cout << ((cntx & 1) == (cnty & 1) ? "YES" : "NO");
	}
}

int main() {
	solve();
}


822A. I’m bored with life

原题指路:https://codeforces.com/problemset/problem/822/A

题意

给定两整数a,b  (1≤a,b≤1e9,min⁡{a,b}≤12)a,b\ \ (1\leq a,b\leq 1\mathrm{e}9,\min\{a,b\}\leq 12)a,b  (1a,b1e9,min{a,b}12),求gcd⁡(a!,b!)\gcd(a!,b!)gcd(a!,b!).

思路

显然gcd⁡(a!,b!)=min⁡{a,b}!\gcd(a!,b!)=\min\{a,b\}!gcd(a!,b!)=min{a,b}!.

答案最大为12!≈4e812!\approx 4\mathrm{e}812!4e8,不会爆int.

代码

void solve() {
	int a, b; cin >> a >> b;

	int ans = 1;
	for (int i = 2; i <= min(a, b); i++) ans *= i;
	cout << ans;
}

int main() {
	solve();
}


858A. k-rounding

原题指路:https://codeforces.com/problemset/problem/858/A

题意

对一个整数nnn,定义它的k−k-krounding为十进制下以至少kkk个零结尾的最小的nnn的倍数.给定两整数n,k  (1≤n≤1e9,0≤k≤8)n,k\ \ (1\leq n\leq 1\mathrm{e}9,0\leq k\leq 8)n,k  (1n1e9,0k8),求nnnk−k-krounding.

思路

ans=lcm(n,10k)ans=\mathrm{lcm}(n,10^k)ans=lcm(n,10k).

代码

void solve() {
	int n, k; cin >> n >> k;
	cout << lcm(n, (int)pow(10, k));
}

int main() {
	solve();
}


898B. Proper Nutrition

原题指路:https://codeforces.com/problemset/problem/898/B

题意

给定三个整数n,a,b  (1≤a,b,n≤1e7)n,a,b\ \ (1\leq a,b,n\leq 1\mathrm{e}7)n,a,b  (1a,b,n1e7),求一个非负整数对(x,y) s.t. ax+by=n(x,y)\ s.t.\ ax+by=n(x,y) s.t. ax+by=n.若有解,输出"YES",并输出任一组解;否则输出"NO".

思路

暴力即可.

代码

void solve() {
	int n, a, b; cin >> n >> a >> b;

	for (int x = 0; x <= 1e7; x++) {
		ll cur = (ll)n - (ll)x * a;
		if (cur >= 0 && cur % b == 0) {
			cout << "YES" << endl;
			cout << x << ' ' << cur / b;
			return;
		}
	}

	cout << "NO";
}

int main() {
	solve();
}


919B. Perfect Number

原题指路:https://codeforces.com/problemset/problem/919/B

题意 (2 s2\ \mathrm{s}2 s)

求第k  (1≤k≤1e4)k\ \ (1\leq k\leq 1\mathrm{e}4)k  (1k1e4)小的数位之和为101010的正整数.

思路

101010的分拆数乘上全排列,中间还可以插000,可估计出前1e41\mathrm{e}41e4个满足条件的数不会很大,暴力求即可.

代码

void solve() {
	int k; cin >> k;

	function<bool(int)> get = [](int x)->bool {
		string s = to_string(x);
		int res = 0;
		for (auto ch : s) res += ch & 15;
		return res == 10;
	};

	int ans = 0;
	while (k) k -= get(++ans);
	cout << ans;
}

int main() {
	solve();
}


946B. Weird Subtraction Process

原题指路:https://codeforces.com/problemset/problem/946/B

题意

给定两数a,b  (1≤a,b≤1e18)a,b\ \ (1\leq a,b\leq 1\mathrm{e}18)a,b  (1a,b1e18),现有如下三步操作:

①若a=b=0a=b=0a=b=0,操作结束,否则执行步骤②.

②若a≥2ba\geq 2ba2b,令a=a−2ba=a-2ba=a2b,执行步骤①;否则执行步骤③.

③若b≥2ab\geq 2ab2a,令b=b−2ab=b-2ab=b2a,执行步骤①;否则操作结束.

求操作结束后的a,ba,ba,b.

思路

将若干次减法合并为一次取模,模拟该过程即可.

代码

void solve() {
	ll a, b; cin >> a >> b;

	while (a && b) {
		a %= 2 * b;
		if (!a || b < 2 * a) break;
		else b %= 2 * a;
	}
	cout << a << ' ' << b;
}

int main() {
	solve();
}


1033B. Square Difference

原题指路:https://codeforces.com/problemset/problem/1033/B

题意

在边长为aaa的正方形的左上角切除一个边长为b  (b<a)b\ \ (b<a)b  (b<a)的正方形,问剩下的L型的面积是否是素数.

t  (1≤t≤5)t\ \ (1\leq t\leq 5)t  (1t5)组测试数据.每组测试数据输入两个整数a,b  (1≤b<a≤1e11)a,b\ \ (1\leq b<a\leq 1\mathrm{e}11)a,b  (1b<a1e11).

思路

注意到a2−b2=(a−b)(a+b)a^2-b^2=(a-b)(a+b)a2b2=(ab)(a+b),显然L的面积是素数的充要条件是:a−b=1,a+b∈primesa-b=1,a+b\in primesab=1,a+bprimes.

a+b≤2e11a+b\leq 2\mathrm{e}11a+b2e11,用试除法判定素数即可.注意此处用Miller-Rabin算法中间会爆ll.

代码

bool check(ll x) {
	for (int i = 2; i <= sqrt(x); i++)
		if (x % i == 0) return false;
	return true;
}

void solve() {
	ll a, b; cin >> a >> b;
	cout << (a - b == 1 && check(a + b) ? "YES" : "NO") << endl;
}

int main() {
	CaseT  // 单测时注释掉该行
	solve();
}


1051B. Relatively Prime Pairs

原题指路:https://codeforces.com/problemset/problem/1051/B

题意 (2 s2\ \mathrm{s}2 s)

给定两个整数l,r  (1≤l≤r≤1e18,r−l+1≤3e5,r−l是偶数)l,r\ \ (1\leq l\leq r\leq 1\mathrm{e}18,r-l+1\leq 3\mathrm{e}5,r-l是偶数)l,r  (1lr1e18,rl+13e5,rl是偶数).若能将[l,r][l,r][l,r]中的所有整数分为r−l+12\dfrac{r-l+1}{2}2rl+1个数对,使得每个数在且仅在一个数对中,且每个数对的gcd⁡=1\gcd=1gcd=1,输出"YES"并输出一个合法方案;否则输出"NO".

思路

注意到相邻两数的gcd⁡=1\gcd=1gcd=1,依次输出即可.

代码

void solve() {
	ll l, r; cin >> l >> r;

	cout << "YES" << endl;
	for (ll i = l; i <= r; i += 2) cout << i << ' ' << i + 1 << endl;
}

int main() {
	solve();
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值