5.4-5.5 单位矩阵与矩阵的逆

本文介绍了单位矩阵的概念,强调其在矩阵乘法中保持向量不变的特性,并指出单位矩阵仅包含1和0,主对角线为1。讨论了单位矩阵的性质,包括与任意矩阵相乘仍保持原矩阵不变的性质。接着探讨了矩阵的逆,解释了逆矩阵的定义和求解条件,特别指出矩阵乘法不满足交换律。最后,区分了左逆和右逆矩阵,并证明了对于可逆矩阵,左逆和右逆是相等的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单位矩阵

与任意一个列向量相乘没有产生变换的矩阵是单位矩阵,记作I
在这里插入图片描述

==> In 为一个k * j的单位矩阵,矩阵中每一项元素用 i kj 表示。且矩阵中只有1和0两种数,当 k=j 时 为1 ,当k 不等于 j时,全为0
==> 即在单位矩阵中,主对角线都为1
==> 单位矩阵一定是方阵
在这里插入图片描述

单位矩阵的性质

I . A = A
通过矩阵乘法定义 ==>
在这里插入图片描述
在这里插入图片描述
也满足 A . I = A

同理 ==>
在这里插入图片描述

矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值