在Docker上部署Ollama+AnythingLLM完成本地LLM Agent部署

图片

在当今快速发展的人工智能领域,本地部署大型语言模型(LLM)Agent正逐渐成为企业和研究者关注的焦点。本地部署不仅能够提供更高的数据安全性和隐私保护,还能减少对外部服务的依赖,提高响应速度和系统稳定性。本文将介绍如何通过Docker容器技术,结合Ollama和AnythingLLM两款工具,完成本地LLM Agent的部署和应用。

Ollama镜像部署

Ollama是一个开源的大型语言模型服务工具,它为用户在本地环境中快速部署和运行大型模型提供了便利。通过简洁的安装指南和一键命令,用户能够迅速地启动如Llama 2和Llama 3等开源大型语言模型。Ollama通过简化LLM部署和管理流程,使用户能够高效地在本地环境中操作大型语言模型。

本文以Windows系统下的Docker部署Ollama为例,通过镜像能够轻量化且更方便地管理虚拟环境。

首先在官网Docker Desktop: The #1 Containerization Tool for Developers | Docker下载Docker Desktop,下载后在DockerHub中可以找到ollama项目,拉取镜像。

这里注意Docker的安装程序默认安装在C盘,由于镜像文件非常大,所以如果想要更换安装路径可以在终端通过如下类似的命令安装:

"D:\Download\Docker Desktop Installer.exe"  install --installation-dir="D:\Program\Docker"

### 使用 DeepSeek、OllamaAnythingLLM 构建本地知识库 #### 准备工作 为了成功构建包含 DeepSeek、OllamaAnythingLLM本地知识库,需先确认环境配置满足最低硬件需求,并完成必要的软件安装。 - **操作系统支持**:Linux, macOS 或 Windows (建议使用 WSL2)[^1]。 - **依赖项准备**:Python 3.x 版本及其开发工具链;DockerDocker Compose 安装完毕并能正常运行[^2]。 #### 配置与部署 ##### 获取所需资源 通过命令行拉取最新版本的 Ollama 模型文件至本地存储: ```bash ollama pull bge-m3 ``` 此操作会下载指定的大规模预训练语言模型及相关组件,确保后续处理流程顺利进行。 ##### 初始化项目结构 创建一个新的目录用于存放整个项目的源码以及相关配置文件。在此基础上初始化 Git 仓库以便于版本控制管理。 ```bash mkdir my_local_knowledge_base && cd $_ git init . ``` ##### 设置 DeepSeek 环境变量 编辑 `.env` 文件加入如下内容以适应特定场景下的参数调整(如 API 密钥、端口映射等)。这一步骤对于保障系统的稳定性和安全性至关重要。 ```plaintext DEEPSEEK_API_KEY=your_api_key_here PORT=8080 DEBUG=True ``` ##### 整合 AnythingLLM 平台 利用 AnythingLLM 提供的功能接口快速对接各类外部数据源,包括但不限于静态 HTML 页面、PDF 文档集或是关系型数据库表单记录。具体实现方式可参照官方文档说明中的 Python SDK 应用实例。 ```python from anythingllm import DocumentLoader, KnowledgeBaseBuilder loader = DocumentLoader(source="path/to/your/documents") builder = KnowledgeBaseBuilder(loader) knowledge_base = builder.build() ``` #### 启动服务 一切就绪之后,在终端执行启动脚本来激活全部微服务单元,使之协同运作形成完整的解决方案栈。 ```bash docker-compose up -d --build ``` 此时访问 `http://localhost:8080` 即可见证由 DeepSeek 加持的人工智能驱动的知识检索界面雏形初现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值