C/C++ 原码 反码 补码

本文详细介绍了计算机中位运算的概念,包括原码、反码、补码的定义及其转换过程,并通过具体的C++代码示例展示了位运算符的应用,如按位非、左移、右移、按位与、按位异或及按位或等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原码 反码 补码

  • 单目(++,–,!,~,())>算术>(左移、右移)>关系>(&,^,|)>逻辑>条件>赋值>逗号
    位运算:~,<<,>>,^,|,& 2进制补码的形式参与运算
    原码:有符号的最高位表示符号位,其他位表示大小
    反码:正数与原码相同,负数:符号位不变,按位取反(0->1,1->0)
    补码:正数与原码相同。 负数:反码+1
    补码的补码就是原码。
    ~按位非:按位取反(0变1,1变0)
    <<左移: 低位补0.
    >>右移:正数高位补0,负数高位补1
    &按位与:同1为1,否则为0
    ^按位异或:同则为0,异则为1
    |按位或:有1为1,否则为0

#include <iostream>
using namespace std;

int main()
{
	int x = 0;
	/*
	int型 4个字节=32位
x的原码:0 0000000 00000000 00000000 00001010
   反码:0 0000000 00000000 00000000 00001010
   补码:0 0000000 00000000 00000000 00001010
	~   1 1111111 11111111 11111111 11110101 补码(看成原码求补码)
	反码1 0000000 00000000 00000000 00001010
	补码1 0000000 00000000 00000000 00001011 补码的补码(原码)
		-11
		~x=-(x+1)
		0	1	2	3 
		-1 -2	-3 -4
	*/
	cout << ~x << endl;//-11
	char c = 10;
	/*
	整型提升
	int型 4个字节=32位
x的原码: 0 0000000 00000000 00000000 00001010
	反码:0 0000000 00000000 00000000 00001010
	补码:0 0000000 00000000 00000000 00001010
	<<2  0 0000000 00000000 00000000 00101000 补码(看成原码求补码)
	反码 0 0000000 00000000 00000000 00101000
	补码 0 0000000 00000000 00000000 00101000 补码的补码(原码)
		40
		m<<n结果为m*2的n次幂(没有数据溢出的情况下)

	*/
	cout << (c << 2) << endl;//40  
	c = c << 4;//c<<4=160 把160赋值变量c时,数据溢出
	cout << (int)c << endl;//-96=160-256

	c = -5;
	/*
		m>>n结果为:
		如果m为正数:m/2的n次幂
		如果m为负数:如果能整除: m/2的n次幂 不能整除m/2的n次幂-1
		
		x为整数:x>>31,如果结果为0,x正数;如果为-1,x为负数

	*/
	cout << (c >> 2) << endl;//10/4
	x >> 31 ? printf("负数") : printf("正数");

	//按位与
	/*
	5补码	00000101
	3补码	00000011
			00000001 补码

	判断一个正整数x是否为2的n次幂? !(x&x-1)
	*/
	cout << (5 & 3) << endl;//1

	/*
		不经过第三方变量交换两个整型变量的值
	*/
	int a=3, b=5;
	//不会产生数据溢出
	b = a^b;
	a = a^b;
	b = a^b;
	cout << "a=" << a << ",b=" << b << endl;

	 char cChar = 0xab;
	cChar = ~cChar >> 4 + 1;
	cout << (int)cChar << endl;



	return 0;
}
### C++原码反码补码的概念 在C++编程语言中,数值的内部表示方式对于理解程序行为至关重要。具体来说,计算机如何处理正数和负数直接影响到算术运算的结果。 #### 原码 (Sign-Magnitude Representation) 原码是最直观的一种编码形式,在这种表示法下,最高位作为符号位来区分正负数:0代表正值;1则用于标记负值。其余各位按照绝对值大小正常排列即可[^2]。例如: - 正十进制数`+5`对应的八位二进制原码为 `0000 0101` - 负十进制数 `-5` 的八位二进制原码则是 `1000 0101` 然而,由于存在两个不同的零(`+0` 和 `-0`)以及加减法规则复杂化等问题,实际应用较少采用这种方式存储数据。 #### 反码 (One's Complement Representation) 为了简化硬件设计并解决原码中存在的问题,引入了反码概念。对于任意给定的一个n位二进制数X而言: - 如果 X 是正数,则其反码等于自身的原码; - 若 X 属于负数范畴时,先保持最左边一位不变(即保留原有的符号),再将其余各位置上的每一位都求逆得到最终结果。 继续以上述例子说明: - 对应于 `-5` ,它的反码会变成 `1111 1010` 值得注意的是,虽然这种方法解决了部分缺陷但仍不够完美——依旧有两个版本的 “0”。 #### 补码 (Two's Complement Representation) 现代计算机普遍采取补码体系来表达带符号整型变量。该方法不仅消除了双零现象还使得加法器能够统一处理加法与借位相减两种情况。针对任一 n 位有符号整数 Y : - 当Y≥0时, 它们的补码与其原码相同; - 否则(Y<0), 需要基于相应长度的最大无符号整数值 M 来构建: 即通过计算M-Y获得目标对象所对应的有效编码[^3]。 回到之前的实例上来看, - 数字 `-5` 在8-bit系统中的补码将是 `1111 1011` 此外,当涉及到具体的机器指令集架构如 x86 或 ARM 等平台时,默认情况下均是以补码的形式保存所有的 signed integer 类型的数据成员[^4]。 ```cpp #include <iostream> using namespace std; int main() { int a = -5; cout << bitset<8>(a) << endl; // 输出补码表示 } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GAME LIAO

感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值