我们先不考虑修改操作。如何求解一个n个方程的n元线性模方程组呢?我们可以用图论来做!把i的父亲设为pi,我们就得到了一个基环森林。对于每一个连通块,一定会有一个环,我们根据这个环就可以求解出一个方程的解,然后这整个连通块的解就都可以得到了。我们考虑如何动态维护这个东西,我们想到了lct。把每棵基环树的环拆掉一条边,我们就得到了一个森林。把拆掉的这条边的一端作为根,另一端记在根上,记作spfa[rt]。对于一条树链,我们用splay维护最深的节点关于链顶的父亲(根的父亲即spfa[rt])的线性关系。
我们要求解x怎么做呢?
我们记x所在的树的根为rt,spfa[rt]为y,我们取出(rt,y)这条树链,就得到了y关于y的线性关系,我们就可以解出y了。(求逆元即可。如果k=1,b=0则y多解,k=1,b!=0则无解)然后再取出树链(rt,x),我们就得到了x关于y的线性关系,将y带入就可以求出x了!
修改的时候怎么办呢?
我们首先把x切下来:
如果x是根,则直接spfa[rt]=0
否则切下x,看x是否在环上(切下x之后如果findrt(y)==rt说明不在环上),如果在,spfa[rt]=0,link(rt,y)。
然后看x的新父亲f是否在x的子树中,如果在,spfa[x]=f,否则link(x,f)。
是有根树lct哟!修改链接访问一个点的信息之前一定要access+splay哟!
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 30010
#define mod 10007
inline char gc(){
static char buf[1<<16],*S,*T;
if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
return x*f;
}
char op[10];
inline void get_S(){
char ch=gc();int len=0;
while(ch<'A'||ch>'Z') ch=gc();
while(ch>='A'&&ch<='Z') op[++len]=ch,ch=gc();
}
int n,m,fa[N],c[N][2],vis[N],tot=0,spfa[N];
struct data{
int k,b;
friend data operator+(data a,data b){
data res;
res.k=a.k*b.k%mod;
res.b=(b.k*a.b+b.b)%mod;return res;
}
}v[N],sum[N];
inline void dfs(int x){
vis[x]=tot;
if(vis[fa[x]]==tot){
spfa[x]=fa[x];fa[x]=0;return;
}if(!vis[fa[x]]) dfs(fa[x]);
}
inline int ksm(int x,int k){
int res=1;for(;k;k>>=1,x=x*x%mod) if(k&1) res=res*x%mod;return res;
}
inline bool isroot(int x){return x!=c[fa[x]][0]&&x!=c[fa[x]][1];}
inline void update(int p){
int l=c[p][0],r=c[p][1];sum[p]=v[p];
if(l) sum[p]=sum[l]+sum[p];
if(r) sum[p]=sum[p]+sum[r];
}
inline void rotate(int x){
int y=fa[x],z=fa[y],l=x==c[y][1],r=l^1;
if(!isroot(y)) c[z][y==c[z][1]]=x;
fa[c[x][r]]=y;fa[y]=x;fa[x]=z;
c[y][l]=c[x][r];c[x][r]=y;update(y);update(x);
}
inline void splay(int x){
while(!isroot(x)){
int y=fa[x],z=fa[y];
if(!isroot(y)){
if(x==c[y][1]^y==c[z][1]) rotate(x);
else rotate(y);
}rotate(x);
}
}
inline void access(int x){
int y=0;while(x){splay(x);c[x][1]=y;update(x);y=x;x=fa[x];}
}
inline int findrt(int x){
access(x);splay(x);
while(c[x][0]) x=c[x][0];return x;
}
inline int ask(int x){
int rt=findrt(x),y=spfa[rt];
access(y);splay(y);int k=sum[y].k,b=sum[y].b,vy=0;
if(k==1){
if(b) return -1;vy=-1;
}else if(!k) vy=b;
else vy=(mod-b)*ksm(k-1,mod-2)%mod;
access(x);splay(x);k=sum[x].k;b=sum[x].b;
if(vy==-1) return k?-2:b;
return (k*vy+b)%mod;
}
inline void cut(int x){
access(x);splay(x);
fa[c[x][0]]=0;c[x][0]=0;update(x);
}
inline void link(int x,int y){
access(x);splay(x);fa[x]=y;
}
inline void modify(int x){
int k=read(),f=read(),b=read();
access(x);splay(x);v[x].k=k;v[x].b=b;update(x);
int rt=findrt(x),y=spfa[rt];
if(x==rt) spfa[rt]=0;
else{
cut(x);if(findrt(y)!=rt) spfa[rt]=0,link(rt,y);
}if(findrt(f)==x) spfa[x]=f;
else link(x,f);
}
int main(){
// freopen("a.in","r",stdin);
n=read();
for(int i=1;i<=n;++i) v[i].k=read(),fa[i]=read(),v[i].b=read();
for(int i=1;i<=n;++i) if(!vis[i]) ++tot,dfs(i);
m=read();while(m--){
get_S();int x=read();
if(op[1]=='A') printf("%d\n",ask(x));
else modify(x);
}return 0;
}